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why study spectra?
• spectra are like
topological spaces but

simpler and
more algebraic

• spectra control

generalised cohomology
theories



• spectra are
interesting objects in

their own right

•Spectra are the base

objects for spectral
algebra
→ spectral geometry



Homotopy us . homology
• If ✗ is a topological
space, have

its suspension

EX

All spaces
are pointed !

Example
Ssn = sh-11



• On cohomology
,
have

suspension isomorphisms
tix =H""E✗
•Not the case for

.

homotopy !
• However

,
S
'
→✗ suspends

to 5-
"

→ EX & we

get maps

In✗→ Tiny EX



• Freudenthal suspension
theorem :

if ✗ is a finite
cw complex then
IT✗→ T1n+,{✗ → Th+zÉ✗→ .

. .

eventually stabilise

Hope These
stable homotopy groups
are less complicated
than the unstable ones .



• More generally
, if ✗

is a space put

Tin✗ lin→Tn+mEmX
m

the nth stark homotopy
group of ✗

• Note that its an
abelian

group .



• If Erx = Ery
then

✗ I 1T¥ Y
• Idea : there should
be some category of
Space - like objects

'

where one can invert
E
,
& some notion

of
'weak equivalences

'

which are detected by
stable homotopy groups .



Constructing spectra
• A spectrum is an

IN - graded sequence of
spaces Xi together
with structure maps
EX

,
→✗in

•A morphism of spectra
is a sequence of maps
✗i → Yi making the
obvious diagrams commute .



• Spectra have
homotopy groups :
Tin Xi→ TIME ✗i→ F+, A-11

define
TLNX : = li÷Tn+m✗m



Example ✗ a space .

Have a suspension sputum
Ex with

(E)i=Éx
Then tnEIIT.SI .

Sub -example
15=55 sphere spectrum
£515 so Slit Si



Example A an abelian

group . Have an

Eilenberg - Mac Lane spectrum
HA with CHA)i=K(Ai)
& TEA = {A * =o0 else

More generally if A
is a chain cplx of
abelian groups have a
spectrum HA with

I*HA I H☒A



The stable homotopy category
• Say ✗→-1 is a
stable equivalence if
IT# ✗→ I#Y is an

isomorphism .

• The stable homotopy
category SHC is the
localisation

spectra[stable equivsi]



• The functor A → HA

gives an embedding
DG)→ Stk

• SHC is a triangulated
category & the above

embedding is a
triangle functor .



• On SHC
,
E is

invertible

• In particular in SHC
we have

'

spheres'

É$ for all it K

• SHC is enriched in
abelian groups

& one has

[É§✗]~TiX



Remark stable equivalences
are the weak eguivs . of
a model structure on Spectra

Fitrat objects are the
1-spectra

CW spectra are cofibrant .



Cohomology theories
• A cohomology theory
is a functor

F :{
connected
CW

completes}→ grab
satisfying
• homotopy invariance
•F sends wedges to products
• LESS for CW pairs



Examples
• Singular cohomology HH, R)
• K-theory
(complex & real)

• Cobordism

Brown Representsility -1hm

All cohomology theories are
representable by spectra :

FÑ=G°X
,
E)
*

=[E%E*E]



• Moreover maps between

cohomology theories lift to
maps between spectra
Examples
HER) → HR

K-theory → KU
,
KO

cobordism → MO

In particular
cobordism classes

TLNMOI {of compact smooth}n- manifolds



Structured spectra
• Spaces have a smash

product ✗nY=
✗v7

- 5^5=5 -in

More generally , Shaz

• Unfortunately
,

n does not

lift to spectra in a
homotopicallg sensible way
( Lewis )



• The problem : there are

nontrivial braiding isomorphisms
5ns '→- Sis '

that are nontrivial on homotopy
(the above is - I c- -1125 )

• 5=5 's . . .rs
'

gets a
En - action via permuting
the factors .



• One solntim : carry these
actions around as part of
the data

Hovey - Shipley - Smith :
A symmetric spectrum
is a spectrum {✗i}
with actions Eia Xi
st

.

the composite maps
§nXi → ✗i -1K
are

⇐ ✗Ei - equivariant



• Then the category of
symmetric spectra admits
a symmetric monoidal smash

product whose unit is $
• a ring spectrum is

a monoid for h
ie .

a spectrum A
with maps
An A →A
$→ A

satisfying associativity
& unit axioms



Example >
* $ is the initial

ring spectrum Ccf. 2)
• It A is a ring then

HA is a ring spectrum

• HI IGI, HA]*
Chp
products
1 multiplicationinduced

from HA



• A module over a

ring spectrum R

is a spectrum M
ith action map
Rnm→m
satisfying some identities

Examples
• Every spectrum ✗ is

an $ - module in a

unique way .



• Up to homotopy
,

HR - modules are the
same thing as

dy R - modules :

DCR)=tb(HR- mod)
→ Hots -modules)
= SHC



• Technical consideration :

symmetric spectra are the
simplest model of
highly structured spectra,
but their homotopy theory

,
13 more complicated :

correct notion of weak

equivalence is not
detected on underlying
spectra .



Other models :
• orthogonal spectra
• S - modules

• coordinate - free spectra
indeed by fd . real )( inner product spaces

• Excisive functors



Applications of ring spectra

Applications of rings :

1) Algebraic geometry

2) Homological algebra



1) Spectral geometry
usualcommutative

→ AGrings

commutative derived
dgas or → AGsimplicial
c. rings

commutative
ring →

spectral
spectra AG



Can develop many of
the concepts of classical
Ab in the spectral
world

.

Applications so far are
more topological :

eg . tmf



2) Spectral algebra
Fix a ring spectrum A

If N,M are A-modules
,

have Exttn.CN , m)

& Tor (Nim)
via the usual sort

of construction .



In particular can do

Hochschild theory
If R is a commutative

ring spectrum . A an

R-module , put
e

AR An,zA°T
derived enveloping

algebra



Examples
• If R , A are discrete

rings then Aff A④¥A°P
• RE -~R

• ones, =D

•We
$

has homotopy
the dual Steerrod algebra



The topological Hochschild

homology of A relative to
R is

THH'¥A):=To¥%(A , A)
Similarly

,
have topological

Hochschild cohomology

THH#(A) :=Ext¥q(A. A)



• THH 's(A) ;
K-theory KCA)

•THHs.CA) :
'

non -additive
'

deformation
theory of A



Thanks

for
listening !


