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1 Definitions
Work over a field k of characteristic zero. All complexes are cochain complexes; i.e. the differential
has degree 1. A differential graded algebra or dga for short is a complex A with a chain map
µ : A ⊗ A → A that’s associative and unital. Equivalently, a dga is a graded ring together with a
differential d satisfying the (graded) Leibniz rule d(ab) = d(a)b+(−1)|a|d(b). Amorphism of dgas is a
morphism of complexes respecting the unit and multiplication; equivalently it’s a morphism of graded
rings respecting the differential. Say a dga is commutative or a cdga if all graded commutators
[a, b] = ab − (−1)|b||a|ba vanish. Note that if at least one of a, b have even degree, then ab = ba,
whereas if both are of odd degree then ab = −ba. In particular, if a is of odd degree then a2 = 0 – so
the even degree part of a cdga behaves like a symmetric algebra, whereas the odd degree part behaves
like an exterior algebra. Given a dga A, we may form its cohomology HA, which is also a dga under
the multiplication induced from A. We have an obvious k-linear quasi-isomorphism A→ HA; is it an
algebra map?
Example 1.1 ([Hes07]). Let A be the cdga k[u, v, w] where u, v have degree 3 and w has degree 5,
and d(w) = uv. So A is finite-dimensional, with basis {1, u, v, w, uv, uw, vw, uvw}. One can check
that H0(A) = H11(A) = k, H3(A) = H8(A) = k ⊕ k, and all other cohomology groups are zero. If
φ : A → HA is an algebra map, then φ(w) must be zero. Hence, φ(uw) must be zero, but uw is one
of the generators of H∗(A), so that φ cannot be a quasi-isomorphism.

In fact, the above example shows something stronger: A admits no dga quasi-isomorphism to
HA. In general, a dga A is called formal if it’s quasi-isomorphic (possibly via a zig-zag of quasi-
isomorphisms) to HA. A dga is called minimal if d = 0; clearly a minimal dga is formal. What
algebra information about A can we transfer along quasi-isomorphisms? The answer is that HA
admits the structure of an A∞-algebra. We’ll follow the treatment of Keller in [Kel01].

Definition 1.2. An A∞-algebra over l is a complex A together with, for each n ≥ 1, a k-bilinear
map mn : A⊗n → A of degree 2 − n satisfying for all n the coherence equations (or the Stasheff
identities)

Stn :
∑

(−1)r+stmr+1+t(1⊗r ⊗ms ⊗ 1⊗t) = 0

where 1 indicates the identity map, the sum runs over decompositions n = r + s + t, and all tensor
products are over k. We’re following the sign conventions of [GJ90]; note that other sign conventions
exist in the literature (e.g. in [LH03]).

Remark 1.3. The original motivation for the definition came from Stasheff’s work on A∞-spaces in
[Sta63]. If X is a pointed topological space and ΩX its loop space, then we have a ‘composition of
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loops’ map ΩX×ΩX → ΩX. It’s not associative, but it is associative up to homotopy. Similarly, one
can bracket the product of four loops a.b.c.d in five different ways, and one obtains five homotopies
fitting into the Mac Lane pentagon. These homotopies are further linked via higher homotopies;
we get an infinite-dimensional polytope K the associahedron with (n − 2)-dimensional faces Kn

corresponding to the homotopies between compositions of n loops. An A∞-space is a topological
space Y together with maps fn : Kn → Y n satisfying the appropriate coherence conditions. For
example a loop space is an A∞-space. Then, if Y is an A∞-space, then the singular chain complex of
Y is an A∞-algebra.

For readability, I’ll often write a1 · a2 to mean a1 ⊗ a2 (multiplication in the tensor algebra).
Suppose that A is an A∞-algebra. Then St1 simply reads as m2

1 = 0, in other words that m1 is
a differential on A. Hence we may define the cohomology HA. The next identity St2 tells us that
m1m2 = m2(m1 · 1− 1 ·m1), or in other words that m2 is a derivation on (A,m1). The third identity
St3 yields

m2(1 ·m2 −m2 · 1) = m1m3 +m3(
∑
i+j=2

1·i ·m1 · 1·j)

The left hand side is the associator of m2, and the right hand side is the boundary of the map m3 in
the complex Hom(A⊗3, A). Hence, m2 is a homotopy associative ‘multiplication’ on A. In particular,
we obtain:

Lemma 1.4. Suppose that A is an A∞-algebra with m3 = 0 or m1 = 0. Then (A,m1,m2) is a dga.
Similarly, if A is any A∞-algebra, then (HA, [m2]) is a graded algebra. Conversely, if (A, d, µ) is a
dga, then (A, d, µ, 0, 0, 0, · · · ) is an A∞-algebra.

Additional signs arise in the above formulas via the Koszul sign rule when one wants to put
elements into them. The following Lemma is extremely useful:

Lemma 1.5. Fix positive integers n = r + s+ t and n homogeneous elements a1, . . . , an in A. Then

(1·r ·ms · 1·t)(a1 · · · an) = (−1)εa1 · · · ar ·ms(ar+1 · · · ar+s) · ar+s+1 · · · an

where ε = s
∑r
j=1 |aj |. In particular, if s is even then the naïve choice of sign is the correct one.

Proof. Using the Koszul sign rule gives a power of |ms|
∑r
j=1 |aj |, which has the same parity as ε.

An A∞-algebra A is strictly unital if there exists an element η ∈ A0 such that m1(η) = 0,
m1(η, a) = m2(a, η) = a, and if n > 2 then mn vanishes whenever one of its arguments is η.

Definition 1.6. Let A and B be A∞-algebras. A morphism is a family of degree 1− n linear maps
fn : A⊗n → B satisfying the identities∑

n=r+s+t
(−1)r+stfr+1+t(1⊗r ⊗ms ⊗ 1⊗t) =

∑
i1+...+ir=n

(−1)σ(i1,...,in)mr(fi1 ⊗ · · · ⊗ fir )

where σ(i1, . . . , in) is the sum
∑
j(r− j)(ij − 1) (note that only terms with r− j odd and ij even will

contribute to the sign).

In particular, f1 is a chain map. A morphism f is strict if it’s a chain map; i.e. fn = 0 for
n > 1. A morphism f is a quasi-isomorphism if f1 is. One can compose morphisms by setting
(f ◦ g)n =

∑
i1+...+ir=n(−1)σ(i1,...,in)fr ◦ (gi1 ⊗ · · · ⊗ gir ).
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2 Coalgebras and homotopy theory
We give an alternate quick definition of an A∞-algebra. If V is a dg-vector space, then the re-
duced tensor coalgebra T̄ c(V ) is a dg-coalgebra: the coproduct is the deconcatenation coproduct
T̄ c(V ) → T̄ c(V ) ⊗ T̄ c(V ) that sends v1 · · · vn to

∑
i v1 · · · vi ⊗ vi+1 · · · vn. The differential is built

out of the bar differential and the differential on V . It’s easy to see that T̄ c(V ) is conilpotent:
∆n+1(v1 · · · vn) = 0. In fact, T̄ c is the cofree conilpotent noncounital coalgebra functor: if C is
conilpotent then C → T̄ c(V ) is determined completely by the composition l : C → T̄ c(V ) → V .
For example, any map f : T̄ c(W ) → T̄ c(V ) is determined completely by its Taylor coefficients
fn : W⊗n → V .

Lemma 2.1. Let f, g be composable coalgebra maps between three reduced tensor coalgebras. Then
the Taylor coefficients of the composition f ◦ g are given by

(g ◦ f)n =
∑

i1+...+ir=n
gr(fi1 ⊗ · · · ⊗ fir )

Note the similarity with composition of A∞-algebra maps.

Definition 2.2. Let C be a dg-coalgebra. A coderivation of degree p on C is a linear degree p
endomorphism δ of C satisfying (δ ⊗ 1 + 1⊗ δ) ◦∆ = ∆ ◦ δ.

The graded space Coder(C) of all coderivations of C is not closed under composition, but is closed
under the commutator bracket. Say that δ ∈ Coder1(C) is a differential if δ2 = 0; in this case ad(δ)
is a differential on Coder(C), making Coder(C) into a dgla. In the special case that C = T̄ c(V ), a
coderivation is determined by its Taylor coefficients. Coderivations compose similarly to coalgebra
morphisms:

Lemma 2.3. Let δ, δ′ be coderivations on T̄ c(V ). Then the Taylor coefficients of the composition
δ ◦ δ′ are given by

(δ ◦ δ′)n =
∑

r+s+t=n
δr+1+t(1⊗r ⊗ δ′s ⊗ 1⊗t)

Theorem 2.4. An A∞-algebra structure on a graded vector space A is the same thing as a differential
δ on T̄ c(A[1]).

Proof. We provide a sketch. Given a coderivation δ we obtain Taylor coefficients δn : A[1]⊗n → A of
degree 1; in other words, these are maps mn : A⊗n → A of degree 2 − n. The Stasheff identities are
equivalent to δ being a differential. The sign changes occur in the Stasheff identities because of the
need to move elements past the formal suspension symbol [1].

The following proposition can be checked in a similar manner:

Proposition 2.5. Let A,A′ be two A∞-algebras with associated differentials δ, δ′. Then an A∞-
morphism f : A → A′ is the same thing as a coalgebra morphism T̄ c(A[1]) → T̄ c(A′[1]) commuting
with the coderivations.

Definition 2.6. Let A,A′ be A∞-algebras and f, g a pair of maps A→ A′. Let F,G be the associated
maps T̄ c(A[1]) → T̄ c(A′[1]). Say that f and g are homotopic if there’s a map H : T̄ c(A[1]) →
T̄ c(A′[1]) of degree −1 with ∆H = F ⊗H + H ⊗ G and F − G = ∂H, where ∂ is the differential in
the Hom-complex.
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One can unwind this definition into a set of identities on the Taylor coefficients of H; this is done in
[LH03], 1.2. Say that A,A′ are homotopy equivalent if there are maps f : a→ A′ and f ′ : A′ → A

satisfying f ′f ' idA and ff ′ ' idA′ .

Theorem 2.7 ([Pro11]). Homotopy equivalence is an equivalence relation on the category Alg∞
of A∞-algebras. Moreover, two A∞-algebras are homotopy equivalent if and only if they’re quasi-
isomorphic.

The category dga of differential graded algebras sits inside the category Alg∞. It’s not a full
subcategory: there may be more A∞-algebra maps than dga maps between two dgas. However,
two dgas are dga quasi-isomorphic if and only if they’re A∞-quasi-isomorphic: this is shown in, for
example, [LH03], 1.3.1.3. Abstractly, this follows from the existence of model structures on both dga
and cndgc, the category of conilpotent dg-coalgebras, for which the bar and cobar constructions are
Quillen equivalences.

Including dga ↪→ Alg∞ does not create more quasi-isomorphism classes. Indeed every A∞-algebra
is quasi-isomorphic to a dga: one can take the adjunction quasi-isomorphism ΩBA → A induced by
the bar and cobar constructions. However, we do get new descriptions of quasi-isomorphism class
representatives. One nice such representative is the minimal model of an A∞-algebra.

3 Minimal models
An A∞-algebra is minimal if m1 = 0. Clearly a dga is minimal (in the earlier sense) if and only if
it’s a minimal A∞-algebra. Every A∞-algebra admits a minimal model. More precisely:

Theorem 3.1 (Kadeishvili [Kad80]). Let (A,m1,m2, . . .) be an A∞-algebra, and let HA be its coho-
mology ring. Then there exists the structure of an A∞-algebra HA = (HA, 0, [m2], p3, p4, . . .) on HA,
and an A∞-algebra morphism HA→ A lifting the identity of A. Moreover, the A∞-algebra structure
on HA is unique up to quasi-isomorphism.

Remark 3.2. While the multiplication on HA is induced by m2, we need not have pn = [mn] for n > 2.
Indeed, if A is a non-formal dga, then HA must have nontrivial higher multiplications. We also note
that HA → A is clearly an A∞-quasi-isomorphism, since it lifts the identity on A. We also remark
that the theorem follows from the essentially equivalent homotopy transfer theorem: if A is an
A∞-algebra, and V a homotopy retract of A, then V admits the structure of an A∞-algebra making
the retract into an A∞-quasi-isomorphism (see [LV12] 9.4 for details). The result follows since, over a
field, the cohomology of any chain complex is always a homotopy retract as one can choose splittings.

It’s possible to give a constructive proof of Kadeishvili’s theorem: Merkulov did this in [Mer99].
One can define the pn recursively: suppose for convenience that A is a dga. Choose any section
σ : HA → A and let π : A → HA be the projection to HA. We’ll identify HA with its image under
σ. Choose a homotopy h : idA → σπ. Define recursively maps λn : (HA)⊗n → A by λ2 = m2, and

λn :=
∑
s+t=n

(−1)s+1λ2(hλs ⊗ hλt)

where we formally interpret hλ1 := − idA. Then, pn = π ◦ λn. See [Mar06] for some very explicit
formulas (whose sign conventions differ).

Definition 3.3. Let G be an abelian group. An A∞-algebra A is Adams G−graded or just Adams
graded if it admits a secondary grading by G such that each higher multiplication mapmn is of degree
(2− n, 0).
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If an A∞-algebra is Adams graded, then by making appropriate choices one can upgrade Merkulov’s
construction to give an A∞-quasi-isomorphism of Adams graded algebras A → HA. Moreover, if A
is strictly unital, one can choose the morphism to be strictly unital. See Section 2 of [LPWZ09] for
more details.

One can sometimes compute A∞-operations on a dga by means of Massey products. In what follows,
ã means (−1)1+|a|a. We’re using the same sign conventions as [Kra66].

Definition 3.4. Let a1 1, . . . , ar r be any r elements of a dga A. The r-fold Massey product
〈[a1 1], . . . , [ar r]〉 of the cohomology classes [a1 1], . . . , [ar r] is defined to be the set of cohomology classes
of sums ã1 1a2 r + · · ·+ ã1 r−1ar r such that dai j = ãi iai+1 j + · · ·+ ãi j−1aj j for all 1 ≤ i ≤ j ≤ n with
(i, j) 6= (1, n). This operation is well-defined, in the sense that it depends only on the cohomology
classes [a1 1], . . . , [ar r].

We’ll abuse terminology by referring to elements of 〈x1, . . . , xr〉 as Massey products.
Remark 3.5. We remark that 〈x1, . . . , xr〉 may be empty: for example, in order for 〈x, y, z〉 to be
nonempty, we must have xy = yz = 0. More generally, for 〈x1, . . . , xr〉 to be nonempty, we require
that each 〈xp, . . . , xq〉 is nonempty for 0 < q − p < n− 1. Most sources define 〈x, y, z〉 only when it’s
nonempty, and leave it undefined otherwise.

The point is that, when Massey products exist, Merkulov’s higher multiplications pn are all Massey
products, up to sign.

Theorem 3.6 ([LPWZ09]). Let A be a dga and let x1, . . . , xr (r > 2) be cohomology classes in
HA, and suppose that 〈x1, . . . , xr〉 is nonempty. Give HA an A∞-algebra structure via Merkulov’s
construction. Then, up to sign, the higher multiplication pr(x1, . . . , xr) is a Massey product.

So, if A is a formal dga, then all Massey products (that exist) will vanish. The converse is not
true: formality of a dga cannot be checked simply by looking at its Massey products.
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