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Scissors-congruence

Definition
Two polygons P,Q ⊆ R2 are congruent, written P ' Q, if Q can
be obtained from P by translations and reflections.

Definition
Two polygons P,Q are scissors-congruent, written P ∼ Q, if they
decompose as disjointa unions of polygons P =

⋃n
i=0 Pi and

Q =
⋃n

i=0 Qi with each Pi ' Qi .
aup to boundary, i.e. area(Pi ∩ Pj) = 0 for i 6= j



Scissors-congruence

Note that we allow polygonal cuts: the definition is the same
if we allow only straight-line cuts, but the minimal number of
cuts needed to dissect one shape into another may change.

Scissors-congruence is an equivalence relation! To see
transitivity, superimpose cutting patterns.



The WBG theorem

Clearly if P ∼ Q then they have the same area.

The Wallace-Bolyai-Gerwien theorem (1807, 1833, 1835)
says that the converse is also true: if two polygons have the
same area, then they’re scissors-congruent.
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The WBG theorem

To prove the WBG theorem, we’ll prove that:

Any polygon P is scissors-congruent to a square of the same area.

First cut P up into triangles. Then we’ll show that:

A triangle is scissors-congruent to a parallelogram with the
same base (and half the height)
Two parallelograms of the same base and height are
scissors-congruent
Two squares are scissors-congruent to one big square

It’s possible to give ‘Euclid-style’ proofs of the above, but we’ll
give a more modern proof using group actions on R2.
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Pak’s proof

Definition
Let G be a group acting on R2. A fundamental domain for G is a
set X ⊆ R2 containing exactly one element from every orbit of G .

Lemma
Let G be a discrete group of isometries of R2, and suppose that
P,Q are polygons that are (the closures of) fundamental domains
for G . Then P and Q are scissors-congruent.



Pak’s proof

Proof of the Lemma
Since Q is a fundamental domain, the translates {gQ : g ∈ G} tile
the plane. Since G is discrete, only finitely many of the gQ
intersect P nonemptily; write Pi = P ∩ giQ for these, so that
P =

⋃
i Pi . Set Qi := g−1

i Pi . Clearly Pi ' Qi , and since P is a
fundamental domain, Q =

⋃
i Qi and the Qi are pairwise disjoint.

Hence P ∼ Q.



Triangles into parallelograms

G = Z2, acting by translations, extended by a copy of Z/2Z acting
by reflection in the origin; both the white triangles and the white
parallelograms are fundamental domains.



Parallelograms into parallelograms

G = Z2, acting by translations.



Squares into squares

G = Z2, acting by translations along the red axes.



More general decompositions

Definition
Two sets X ,Y ⊆ Rn are equidecomposable if they decompose as
disjoint unions X =

⋃k
i=0 Xi and Y =

⋃k
i=0 Yi , and there exist

isometries f1, . . . , fk of Rn such that fi (Xi ) = Yi .

(Tarksi, 1924) For n = 2, any two polygons of equal area are
equidecomposable.
(Banach-Tarski, 1924) If n ≥ 3, any two bounded sets with
nonempty interior are equidecomposable (not true if n ≤ 2).
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Tarski’s circle-squaring problem

Tarski’s circle-squaring problem, 1925: are a circle and a
square of unit area equidecomposable?
(Dubins, Hirsch, Karush, 1963) A unit circle and a unit square
are not scissors-congruent. In fact, they’re not
equidecomposable if the pieces have Jordan curve boundary.

(Laczkovich 1990) The answer is yes! The proof uses about
1050 pieces, but they may not be (Lebesgue) measurable.
(Grabowski, Máthé, Pikhurko, 2017) One can carry out the
decomposition with measurable pieces.
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Tarski’s circle-squaring problem

If one is allowed to use homotheties, there are much nicer solutions:

Pak



Hinged dissections

One can also consider dissections with hinges, such as Dudeney’s
famous 1902 dissection of a square into a triangle:

AACDDK



Hinged dissections

In fact any scissors-congruence dissection can be ‘hingified’ by
adding chains of triangles to move pieces around (AACDDK 2012).

AACDDK



Hilbert’s third problem

Euclid knew that the volume of a tetrahedron is
1
3(base)× (height), but all known proofs use (some form of)
calculus. Is there a scissors-congruence between a tetrahedron
of unit volume and a cube of unit volume?

Unlike in the 2d case, the answer is no. This was proved by
Max Dehn in 1900, and was the first of Hilbert’s 23 problems
to be solved. The idea of the proof is to define a new
invariant of polyhedra.
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Valuations

Definition
Let φ be a function from the set of convex polyhedra in R3 to
some abelian group. Then φ is a valuation if it satisfies
φ(P1 ∪ P2) = φ(P1) + φ(P2) for disjoint (up to boundaries) P1,P2.

Definition
A valuation is symmetric if it’s invariant under rigid motions
(rotations and translations).

Volume is an example of a symmetric valuation
(convex polyhedra)→ R.



Valuations

Proposition
Let P1,P2 be two scissors-congruent convex polyhedra. Let φ be
any symmetric valuation. Then φ(P1) = φ(P2).

Proof
Decompose P1 =

⋃m
i=0 ∆1

i and P2 =
⋃m

i=0 ∆2
i into tetrahedra with

∆1
i ' ∆2

i . Then φ(P1) =
∑m

i=0 φ(∆1
i ) =

∑m
i=0 φ(∆2

i ) = φ(P2).

So we want to find a symmetric valuation φ such that
φ(unit cube) 6= φ(unit tetrahedron).



Total mean curvature

Definition
Let P be a convex polyhedron. If e is an edge of P, let `e be the
length of e, and let θe be the dihedral angle at e. The total mean
curvature of P is H(P) := 1

2
∑

e `eθe ∈ R.

H is almost a symmetric valuation: we have
H(P ∪ Q) = H(P) + H(Q)− H(P ∩ Q). So if P ∩ Q is a
polygon, we have H(P ∩ Q) =

∑
e `eπ.

Dehn’s idea is to take θe mod π to make H into a symmetric
valuation.
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The Dehn invariant

The Dehn invariant is going to take values in the
infinite-dimensional real vector space

R⊗Q (R/Qπ)

If you don’t like tensor products: take a Q-basis {π} ∪B of R.
Then

R⊗Q (R/Qπ) ∼= RB

via the map RB → R⊗Q (R/Qπ) that sends a basis vector b
to 1⊗ b.



The Dehn invariant

Given a convex polygon P, we set D(P) :=
∑

e `e ⊗ θe . Then
D is indeed a symmetric valuation.

It’s easy to compute that D(cube) = 0.
But the dihedral angles of a regular tetrahedron are all
α = arccos(1

3), which is not a rational multiple of π [one can
induct on n to show that cos(nα) /∈ Z for all n].
Hence, a cube and a regular tetrahedron don’t have the same
Dehn invariant, and are not scissors-congruent.
A theorem of Sydler says that volume and Dehn invariant are
enough to characterise scissors-congruence.
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