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1 Basic birational geometry
I’ll work with irreducible complex varieties.

Recall that a rational map X 99K Y is a morphism U → Y , where U is an open subset of X, and
that a birational map is a rational map with rational inverse. So two varieties are birational if and
only if they’re isomorphic outside of lower-dimensional subsets.

Recall that the function fieldK(X) of a variety X is the local ring of its generic point; equivalently
K(X) is the field of fractions of OX(U) for any open affine subset U of X. It’s clear that the function
field is a birational invariant, and moreover two varieties are birational if and only if they have the
same function field.
Example 1.1. Projective n-space Pn is birational to An via the usual coordinate map Pn 99K An
sending [x0 : x1 : · · · : xn] to (x1

x0
, . . . , xn

x0
).

Proposition 1.2. Every variety is birational to a projective variety.

Proof. In fact, every n-dimensional variety is birational to a hypersurface in Pn+1. See [Har77],
I.4.9.

Let X be a variety and Z a subvariety of codimension c > 0. The blowup BlZ(X) of Z in X
separates all of the lines pointing in different directions out of Z. More formally, if I is the ideal
sheaf of Z, then the blowup is Proj(⊕nIn). The map π : BlZ(X) → X is birational since it’s an
isomorphism outside of the exceptional divisor E := π−1(Z), which has positive codimension.
Example 1.3. If X = A2 and Z is the origin, then the blowup is the subvariety of A2 × P1 given by
the points ((x, y), [u : v]) where xu− yv = 0, and the map to X is simply the projection onto the first
factor. Topologically the blowup is P2#P2. More generally, if Z is a smooth point of X, then the
blowup is just X but with Z replaced by a copy of the projectivised tangent space E = PTZX.

A monoidal transformation is the operation of blowing up a single point. Monoidal transfor-
mations are useful for resolving singularities:
Example 1.4. Let X be the variety Spec(k[x, y, z]/(xy − z2)) ⊆ A3. One can think of X in a few
different ways: as the affine cone over the smooth projective curve xy − z2 = 0 in P2, or as the
quotient of A2 by Z/2Z ⊆ SL2, or simply as a singular surface in A3. The variety X has a unique
singular point at the origin, and if we blow it up1 we get a smooth variety X̃ with a map X̃ → X.

1Okay, really we need to take the strict transform of X inside the blowup Bl0(A3). I’ll be lax about these differences.
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More generally, a proper birational map X̃ → X is a resolution if X̃ is smooth. In characteristic
zero, resolutions always exist: this is a famous theorem of Hironaka [Hir64]. A resolution X̃ → X is
a minimal resolution if any other resolution factors through it. Curves and surfaces always have
minimal resolutions, but higher-dimensional varieties may not - this is closely related to the existence
of flops, which we’ll see more about later.

2 The Minimal Model Program
Goal. Classify all varieties up to isomorphism.

Problem. This is far too difficult.

New goal. Find nice varieties in each birational equivalence class.

This is hopefully easier. In view of 1.2 and Hironaka’s theorem, we can restrict our search to smooth
projective varieties. (In fact, this is too narrow a class of varieties to consider, but will be enough for
curves and surfaces.)

For curves we already have an answer: two smooth projective curves are birational if and only if
they are isomorphic. So the set of birational equivalence classes of curves is in bijection with the set
of isomorphism classes of smooth projective curves.

Now let’s think about surfaces:

Proposition 2.1. Any birational map between surfaces factors as a finite zig-zag of monoidal trans-
formations.

Proof. Like other proofs in this section, can be found in [Har77], V.5.

Remark 2.2. A version of this statement is in fact true in all dimensions; this result is known as the
weak factorisation theorem. See [HM10], Theorem 1.11.

So one can try to construct smooth projective surfaces that are ‘minimal’ in a birational equivalence
class by contracting curves whilst remaining smooth.

Definition 2.3. A (−1)-curve C in a surface X is one whose self-intersection number C2 is −1.

I learned both of the following from the same excellent Stack Exchange question:
Remark 2.4 ([Ele]). What does it mean for a curve to have negative self-intersection? Intuitively, to
define C2, we move C to a curve C ′ in general position and define C2 = C · C ′, which makes sense
and yields a finite number. So if C2 = −1, then such a curve C cannot be moved. This is because the
degree of NC/X is -1, hence it has no global sections, and hence C is rigid in X.
Example 2.5 ([Bra]). If π : X → P2 is the blowup at a point p, then the exceptional divisor E ∼= P1

is a (−1)-curve. To see this, compute π∗O(1) · π∗O(1) in two different ways. First, find distinct lines
l1 and l2 in P2, not passing through p, both representing O(1). Since π is an isomorphism away from
p we have π∗O(1) · π∗O(1) = l1 · l2 = 1. Alternately, find distinct lines L1 and L2 in P2, both passing
through p, representing O(1). Then π∗O(1) is represented by both L1 + E and L2 + E, where I use
the same notation for the Li and their strict transforms. So we have 1 = (L1 +E) · (L2 +E) = 2+E2,
using the fact that L1 and L2 do not meet in X.

This example holds much more generally: in fact, the only way to get a (−1)-curve in a smooth
surface is from a blowup.
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Proposition 2.6 (Castelnuovo). If C ∼= P1 is a (−1)-curve in a smooth surface X, then it can
be smoothly blown down: in other words there exists a smooth surface X0 and a birational map
π : X → X0 that contracts C to a point and is an isomorphism outside of C.
Definition 2.7. A minimal surface is a smooth surface with no (−1)-curves.
Proposition 2.8. Every surface X is birational to a minimal surface.
Proof. By resolving if necessary, we can assume that X is smooth. Now if X has no (−1)-curves,
we’re done. If not, contract any (−1)-curve and repeat the procedure. We obtain a sequence
X = X0 → X1 → X2 → · · · of smooth varieties, where each map is a contraction of a (−1)-curve.
The Picard number2 drops at each step, so this process must stop.

Remark 2.9. If X is not rational or ruled, then the minimal surface of Proposition 2.8 is unique; this
is a theorem of Zariski. Observe that P2 and P1 × P1 are two minimal surfaces that are birational: if
Y is the blowup of two points on P2, then blowing down the strict transform of the line joining them
gets us P1 × P1.
Remark 2.10. A non-minimal surface can have infinitely many (−1)-curves; if one takes two generic
smooth cubics in P2 and blows up their intersection points, the resulting surface has infinitely many
(−1)-curves. This is Remark 1.5 of [CCJ+05].

So every surface is birational to a (usually unique) minimal surface. What about higher dimensions?
Unfortunately none of the above results really apply anymore. In particular we must give up hope
that minimal models will be smooth. First, we want to find the correct definition of a minimal model
in higher dimensions.
Definition 2.11. A Q-Cartier divisor D on X is nef (numerically effective, or numerically eventually
free) if D · C ≥ 0 for every curve C; i.e. the line bundle O(D)|C on C has positive degree.
Remark 2.12. Beware that a nef divisor is not the same thing as a divisor numerically equivalent to
an effective divisor.
Definition 2.13. A variety X is a minimal model if it has terminal Q-factorial singularities3 and
the divisor KX is nef.
Remark 2.14. A minimal model of a surface is a minimal surface. Conversely, a minimal surface is a
minimal model as long as it’s not rational or ruled - see [CCJ+05], 1.10.
Remark 2.15. Really, when talking about minimal models for a variety X, I should make the assump-
tion that the Kodaira dimension of X is nonnegative. Note that the rational or ruled surfaces are
precisely those surfaces X with κ(X) = −∞. So we’re already having some issues.

So to produce a minimal model of a variety, we’d like to repeatedly contract curves that have negative
intersection number with the canonical divisor. This process is the basic idea of the minimal model
program - one also has to make some modifications (‘flips’) at each step to ensure things do not get
‘too singular’.

3 Threefold flops
Let’s restrict to thinking about threefolds. In this case it’s been known since the late 1980s that
the MMP ‘works’, i.e. provides every threefold with a minimal model. The minimal models will not
in general be unique. Is there a way to pass between them? In fact, any two minimal models are
connected by a sequence of special birational operations called flops – this is true in all dimensions
by a theorem of Kawamata [Kaw08]. Here’s the definition, from [HM10]:

2The rank of the Neŕon-Severi group, the finitely generated abelian group Pic(X)/Pic0(X).
3The Q-factorial condition is there to ensure that KX is a Cartier divisor.
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Definition 3.1. A birational morphism π : X̃ → X is small if the exceptional locus is of codimension
at least two (in other words, π does not contract a divisor). Small morphisms exist - the exceptional
locus need not be a divisor!

Definition 3.2. A flop is a commutative diagram

X− X+

Y

φ

π+ π−

where the π± are small birational morphisms, plus some technical conditions4. It’s also common to
refer to the birational map φ as the flop.

Intuitively, a flop is a certain kind of codimension two surgery operation. Indeed, X− and X+

must have the same dimension, and φ is an isomorphism in codimension one. So for threefolds, a flop
is essentially the process of cutting out a number of rational curves Ci and replacing them with others.
Even if we replace the Ci by themselves, the induced birational map φ will not be an isomorphism.
Example 3.3 (the Atiyah flop). Let Y be the quadric cone xy − zw = 0 in A4. Blowing up the origin
gives us a birational morphism X → Y with exceptional divisor P1 × P1. One can contract either of
the copies of P1 by a projection to end up with two varieties X− and X+ connected by a flop.
Remark 3.4. One can think of the existence of flops as controlling the nonuniqueness of minimal
models, and hence the nonexistence of minimal resolutions. The Atiyah flop gives an example of a
variety with no minimal resolution: X− and X+ are two different small resolutions of Y , neither of
which factors through the other.
Example 3.5. After an affine change of coordinates, the quadric Y featuring in the Atiyah flop can
be written as xy − (z +w)(z −w) = 0. Reid in [Rei83] generalised this example to the pagoda flop,
where we now consider xy − (z + wn)(z − wn) = 0.

4 The Contraction Theorem
Our main reference from now on will be [DW15] and [DW16], although [Wem18] is good for the big
picture. Throughout, the setup will be that of a threefold contraction: a projective birational map
f : X → Xcon between (not necessarily smooth) threefolds, with at most one-dimensional fibres,
satisfying some extra conditions5 (loosely, that X and Xcon are not too singular).

Question. Is f a flopping contraction? That is, is there a flop X 99K X+ over Xcon which is the
composition of f with another birational map?

Let L be the locus in Xcon over which f is not an isomorphism. Then f is a flopping contraction
if and only if it contracts curves without contracting a divisor, which is the case if and only if L is
zero-dimensional.

To try and characterise L locally around a closed point p ∈ L ⊆ Xcon, a natural idea is to look
at the deformations of the curves above p. The preimage f−1(p) is set-theoretically a union of P1s.
Assume for now that f−1(p) is a single curve C (we’ll look at the multiple curves case later on, since
it requires a little more technology). Giving C the reduced scheme structure, we see that C ∼= P1.
What deformation-theoretic framework is the right one to use to detect deformations of C?

4We require that the π± are of relative Picard number 1, and the ωX± are trivial over Y .
5In [DW15] it’s required that Rf∗OX

∼= OXcon whereas in [Wem18] it’s required that f is crepant and some mild
assumptions on singularities are made.
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Theorem 4.1. There is a noncommutative C-algebra Acon (depending on f and p), that prorepresents
the functor ncDefCX of noncommutative deformations of the sheaf OC(−1), such that

f is a flopping contraction ⇐⇒ dimCAcon <∞

Corollary 4.2. The morphism f is a flopping contraction if and only if ncDefCX is representable.

What is a noncommutative deformation of a sheaf? Essentially, we pass through a derived equiva-
lence to a noncommutative ring A, and deform the image of the sheaf OC(−1) as an A-module. We’ll
recover Acon as a certain quotient of A.

For technical reasons6, we need to work complete locally. So let Spec(R) be a complete local affine
neighbourhood of p, and base change f to a morphism U → Spec(R).

Theorem 4.3 ([VdB04], Theorem A). There is a tilting bundle V = OU ⊕N on U inducing a derived
equivalence

Db(Coh(U)) RHom(V,−)−−−−−−−→ Db(EndU (V ))

By [VdB04], Lemma 4.2.1 we have an isomorphism EndU (V ) ∼= EndR(f∗V ), so we can work on
the base Spec(R). Put N = f∗N , so that we have EndR(f∗V ) ∼= EndR(R ⊕N). Let A be the basic
algebra Morita equivalent to EndR(R ⊕ N); one can write it as A ∼= EndR(R ⊕ M) for a certain
module M . Define Acon to be A/[R], where [F ] denotes the ideal of maps factoring through sums of
summands of F . A priori, Acon may depend on the tilting bundle: Van den Bergh gives an explicit
construction of V , but we would like Acon to be independent of this. We’re in luck:

Theorem 4.4. The algebra Acon is intrinsic to the contraction; i.e. depends only on the data of the
map f : X → Xcon.

Theorem 4.5. If S is the image of OC(−1) across the derived equivalence, then there is an isomor-
phism ncDefCX ∼= ncDefSA of deformation functors. Moreover, the algebra Acon prorepresents the above
functor.

Returning to 4.1, one proves that Acon is supported exactly on the locus L ∩ Spec(R). So the set
L ∩ Spec(R) is zero-dimensional if and only if Acon is finite-dimensional over C. Hence we get exactly
the statement required.
Example 4.6. The Atiyah flop has contraction algebra C. The pagoda flop has contraction algebra
C[x]/xn.

5 Multiple curves
The situation is similar when we have multiple curves C1, . . . , Cn above the point p. As before, give
them all the reduced scheme structure.

Question. Pick I ⊂ {1, . . . , n}. When does CI :=
⋃
i∈I Ci contract to a point without contracting

a divisor?
6Zariski locally, Acon may fail to be a local ring, because N may be decomposable. See [DW16], §2.4. However, if

we’re willing to define Acon only up to Morita equivalence, then we can work Zariski locally.
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The answer is similar to the |I| = 1 case. Van den Bergh’s tilting bundle V now acquires more
summands: it becomes V = OU ⊕ni=1 Ni. To get Acon from the ring A = EndR(R ⊕ni=1 Mi), one
quotients out by the ideal [R⊕i 6∈I Mi].

Theorem 5.1. The collection of curves CI contracts to a point without contracting a divisor if and
only if dimCAcon <∞.

What deformation functor does Acon prorepresent? It turns out in the multiple curves case to
prorepresent the functor of simultaneous noncommutative deformations of the curves (Ci)i∈I .
The test objects for this functor are the |I|-pointed noncommutative Artinian C-algebras; such an
algebra Γ is m-pointed if and only if it has precisely m simple modules, each one-dimensional over C.
Note that the sheaves OCi

(−1) correspond across the derived equivalence to (one-dimensional) simple
modules Si over A, so informally we are deforming the OCi

(−1) while keeping track of the Ext groups
between them.
Example 5.2 ([DW15], 6.3). Let G be the alternating group A4. The group G acts on C4 by per-
mutations; there is an invariant subspace {(x, y, z, w) : x + y + z + w = 0} which is an irreducible
three-dimensional representation of G. Pick a basis {X,Y, Z}. Let R be CJX,Y, ZKG and take the
crepant resolution f : G − Hilb → Spec(R). Then the fibres of f are at most one-dimensional, and
the fibre above the origin is three curves that meet in an A3 configuration. Contracting the middle
curve C2, we get an infinite-dimensional algebra Acon with the property that the abelianisation Aab

con
is finite-dimensional. The commutative deformation functor of the sheaf OC2(−1) is prorepresented
by Aab

con; hence the representability of the commutative deformation functor does not detect divisorial
contractions.
Example 5.3. Sticking with the previous example, if we choose to contract the outer curves C1 and
C3, we still get get an infinite-dimensional algebra Acon. In this case, the unpointed noncommutative
deformation functor of C1 ∪C3 is representable; we see that for more than one curve, representability
of the unpointed noncommutative deformation functor does not detect divisorial contractions. Of
course, when we’re just dealing with one curve the two functors are the same (note that a 1-pointed
Artinian C-algebra is just a local Artinian C-algebra with residue field C).
Remark 5.4. One can extract a presentation for A out of the geometry of the curves Ci, in a similar
manner to the McKay correspondence. In fact, A is the path algebra of a quiver Q which has exactly
n+ 1 vertices: n corresponding to the sheaves OCi

(−1) and an extra corresponding to R. One links
up vertices if the corresponding curves intersect, and there are some rules dictating where to place
loops on vertices (corresponding to Ext groups) and how the vertex R connects to the others. To get
the quotient Acon, one simply removes all vertices not in I.
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