
Threefold flops and the derived contraction algebra GAeL XXVI, Strasbourg
Work over C (can probably get away with k algebraically closed, characteristic zero – any issues will be with
the birational geometry).

1 The contraction algebra
• Let’s say we have a projective birational morphism f : X → Xcon with X and Xcon noetherian, normal,

integral threefolds. Let’s also say that they have Gorenstein terminal singularities; these are natural
types of singularities to consider when running the MMP. are Say that f is a flopping contraction if
it’s small (doesn’t contract divisors), KX is trivial over the base, and it’s of relative Picard number 1
(the relative Picard number is the difference between the Picard numbers; the Picard number is the
rank of the Picard group). The upshot is that f is an isomorphism away from a finite set of points on
Xcon, above which are trees of rational curves. In this situation, the flop X+ of X exists: informally,
one cuts out the exceptional curves and sews them back in with the opposite orientation. X+ comes
with a flopping contraction to Xcon, and is birational to X over the base. So one should think of flops
as some kind of codimension two birational surgery. MMP types care: flops link all minimal models
of a given variety (in all dimensions this is a theorem of Kawamata; I believe for threefolds the first
unconditional proof is due to Kollár).

• A theorem of Van den Bergh says that if the base Xcon = SpecR is affine, then there exists a tilting
bundle V = OX ⊕M on X. Put A := EndX V – it’s a noncommutative ring. ‘Tilting’ basically means
that V comes with an equivalence of categories RHomX(V,−) : Db(Coh(X))→ Db(mod−A). In the
spirit of noncommutative derived geometry, think of A as a noncommutative model for X.

• In fact, one can compute A on the base as EndR(R⊕M) for some (maximal Cohen-Macaulay) module
M = f∗M (snappy definition: a module is MCM if the natural map RHomR(M,R) → HomR(M,R)
is a quasi-isomorphism). A comes with an idempotent e = idR, and we have A/AeA ∼= EndR(M) the
stable endomorphism algebra, essentially by definition.

• If we vary our affine neighbourhoods, then M may change, and so A/AeA may change. However, its
Morita equivalence class will remain the same. In fact if R is small enough (by which I mean complete
local) then one can fix it so that A/AeA is a finite dimensional algebra with #{curves above p} one-
dimensional simple modules (recall that if B is a finite-dimensional C-algebra, then B/rad(B) is a
copy of Cn. As a B-module, this splits as a direct sum of n pairwise non-isomorphic one-dimensional
simple modules, and these are all of its 1dim. simples.). So for example if f contracts just one
irreducible curve, then this algebra will have exactly one such simple module, which is equivalent to
being Artinian local. More generally, the terminology is Artinian n-pointed (so 1-pointed means local).
Donovan-Wemyss define the contraction algebra Acon to be this fin. dim. alg. A/AeA.

• Why do I care so much about these simples? Suppose there are n irreducible rational curves C1, . . . , Cn

above p. They’re each copies of P1, so one can consider the twists OCi
(−1) as sheaves on X. In fact,

these sheaves are all simple. Moreover, across the derived equivalence, they map to the n distinct
one-dimensional simple A-modules S1, . . . , Sn.

2 Good properties for threefolds
• Acon recovers all known invariants of the flop (e.g. normal bundles, width (Reid), Gopakumar-Vafa
invariants, anything else you can name). Donovan and Wemyss conjecture that it classifies Xcon
complete locally around p. In general it’s a noncommutative algebra!

• Derived categories are closely linked to birational geometry. For example, flops induce derived equiv-
alences: given a variety X and its flop X+, one obtains an induced derived equivalence Db(X) →
Db(X+). When X is smooth, this is a theorem of Bridgeland, and when X is allowed to be singular,
this is a theorem of Chen. The equivalence is a Fourier-Mukai transform: loosely, one takes a complex
on X, pulls it back to the product, twists, and pushes down to X+. Now, flops are symmetric: if
X+ is the flop of X, then X is the flop of X+. This gives us a flop-flop-autoequivalence of Db(X).
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One can translate this into the algebraic setting and obtain an autoequivalence FF of Db(A). It’s not
immediately obvious that FF is nontrivial, but one can check that FF (Si) ∼= Si[2], which is clearly
not isomorphic to Si. (Equivalently in the geometric world FF (OCi

(−1)) ∼= OCi
(−1)[2]). Donovan-

Wemyss prove that FF is representable (in a derived sense; i.e. by a complex, and we have to use
derived hom). In fact, they prove that the kernel ker(A → Acon), considered as a complex in degree
zero, represents FF . So the contraction algebra controls the flop-flop autoequivalence.

3 Bad properties for sufaces
• Let’s see an example. Look at the quadric cone C = {xy = zw} inside A4. Blow up the singular
point to obtain a birational morphism C ′ → C with exceptional divisor P1×P1. One can contract the
left-hand P1 to obtain a birational morphism X → C, and similarly one can contract the right-hand
P1 to obtain Y → C. In fact X is birational to Y over C, and Y is the flop of X. (this is the Atiyah
flop). One can compute the contraction algebra in this example to be C.

• Now cut the whole picture along x = yn, to get a partial resolution of an An singularity (i.e.
SpecC[u, v, t]/(uv− tn+1)). It’s a full resolution if n = 1. In fact, one can also think about n = 0, but
the picture is different since the cut is already smooth. One can compute Acon = C downstairs: this
can either be done directly or using that it behaves well with respect to cuts. The upshot is that it’s
always C, no matter what n one chooses.

• So in this case the Donovan-Wemyss conjecture fails horribly: An singularities are certainly not all
complete locally isomorphic near the singular point. But they all have the same contraction algebra.
So it’s not a very good invariant in this case. Moreover, Acon no longer controls FF ; one can do a
computation to check that FF is not representable by a module (in fact it’s represented by a 2-term
complex).

• Reid’s general elephant principle tells us that if we start with a threefold flopping contraction, and take
a generic cut, the surface we get is a partial resolution of a Kleinian singularity. The question behind
my PhD: is there a different – but similarly defined – invariant that works better in this setup?

4 The derived contraction algebra
• Braun, Chuang, and Lazarev have a general homotopical construction called the derived quotient.

Given an algebra A and an idempotent e, this produces a dga (differential graded algebra), A/LAeA. It’s
nonpositively cohomologically graded, and hasH0(A/LAeA) = A/AeA. I define the derived contraction
algebra Ader

con to be A/LAeA. This has shown up in papers before: Kalck-Yang on relative singularity
categories, Hua-Zhou on noncommutative Mather-Yau, and others. It’s possible to show that each Hi

is finite-dimensional. Ader
con is never Acon; it’s always bigger.

• What’s the point of this definition? I’ll try to give you three reasons: singularity categories, a relation
with FF , and a deformation-theoretic approach.

5 Singularity categories
• Let R be a commutative k-algebra. A perfect complex in Db(R) is a complex quasi-isomorphic to a

bounded complex of finitely generated projective modules. A famous theorem of Serre says that if R
is smooth, then every object in Db(R) is perfect. With this in mind, the singularity category of R
is the Verdier (or Drinfeld) quotient Dsg(R) := Db(R)/per(R). So it’s a triangulated (or dg) category,
such that if R is smooth then Dsg(R) vanishes. It records information about the type of singularities
of R. Now if R is Gorenstein, a theorem of Buchweitz from the 80s tells us that Dsg(R) is the stable
category CM(R) of MCM modules: the objects are the MCM modules, and we kill any morphism that
factors through a free module (hence, through any projective module). In particular, projective objects
are zero in the stable category. If in addition R is a hypersurface, a theorem of Eisenbud (again from
the 80s) says that Σ2 = id, where Σ is the shift functor on Dsg(R).
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• Now let R be as above (so the base of a threefold flop, or a generic cut of such a threefold to a Kleinian
singularity). Let M be the MCM module defining A. Then by definition we have Acon = End(M) =
EndDsg(R)(M). So the contraction algebra knows a little bit about the singaularity category.

• Theorem. (B.): Suppose that X is smooth. Then Ader
con and the dg-category Dsg(R) determine each

other. A similar statement is true if X is not smooth: in general Ader
con only recovers the part of the

singularity category that M sees (i.e. thickDsg(R)(M)).

6 The flop-flop autoequivalence
• 2-periodicity in the singularity category (recall Eisenbud’s theorem) gives a central cocycle η ∈ Ader

con of
degree -2, which you can think of as some sort of periodicity element. Now, one can look at the quotient
Ader

con/η (more formally, take the cone of η : Ader
con → Ader

con), which turns out to be a two-term dga. The
idea is that this quotient Ader

con/η records the unstable derived endomorphisms of M ∈ Dsg(R). Put
J := cone(A→ Ader

con/η); again it’s a two-term complex.

• If we’re in the threefold setup, and X is a minimal model of R, then Ader
con/η is actually just Acon (in

other words, the degree -1 part vanishes). Hence, J is just the kernel of A→ Acon, and so J represents
FF , by Donovan and Wemyss’ theorem. Moreover, in the specific An singularity setup described
earlier, I can prove that J also represents FF (the computation is long and pretty difficult).

• Of course, a natural guess to make is that Ader
con/η always controls FF (in the same sense that Acon

controls FF for threefolds).

7 Deformation theory
• There ought to be another interpretation of Ader

con in terms of deformation theory. When doing de-
formation theory one cares about Artinian local algebras with residue field C: geometrically, if Γ is
such an algebra, then Spec Γ is a fat point (i.e. a point together with some infinitesimal nonreduced
fuzz). These are the right types of thing to give you infinitesimal information: e.g. the dual numbers
C[ε] := C[x]/x2 are such an algebra, and if X is a C-variety then a map SpecC[ε]→ X is nothing more
than a point together with a tangent vector at that point (this is an early exercise in Hartshorne).
An infinitesimal deformation of a C-variety X over Γ is defined to be a Γ-variety X together with an
identification of the fibre over the closed point with X. In other words, we thicken X up infinitesimally
along Γ – one can always take the trivial deformation X = X ×C Γ.

• Deformations pull back along maps of Artinian local algebras, so one can fix an X and consider the
assignment Γ 7→ {deformations of X over Γ} as a functor. In general, it’s not representable by an
Artinian local algebra, but in many situations of geometric interest it’s prorepresentable, which one
can think of as meaning representable by a complete local Noetherian algebra (it equivalently means
that it’s a filtered colimit of representables; to get the complete local algebra take the inverse limit of
the associated system of Artinian algebras).

• One can also do noncommutative or derived or pointed (or etc...) deformation theory by modifying
the definition of Artinian local algebra accordingly (the formal setup is the same). The point is this: a
theorem of Donovan-Wemyss says that Acon prorepresents the noncommutative deformation functor of
the flopping curves. But of course, Acon is already Artinian – so the functor is actually representable
– so why did I bother to introduce prorepresentability?

• Because I expect Ader
con to prorepresent the derived noncommutative deformation functor, and Ader

con is
not an Artinian dga. This also gives a new way to do computations – in fact really the only way I
know to effectively do computations – and provides local-to-global results (it would imply that Ader

con is
determined by REndX(⊕iOCi

(−1)). For experts: the usual Koszul duality args don’t work, and the
proof will be quite subtle. When I submitted my abstract I thought I had a proof of this, which turned
out not to work. (I am pretty confident that it is true!)
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• Assuming that the above holds, then for the An singularities the deformation theory computations show
that Ader

con is a finer invariant than Acon: as an A∞-algebra it’s C[η]〈ζ〉 with a single Massey product
〈ζ⊗(n+1)〉 = ηn, and all others involving ζ are zero (in particular ζ is square-zero unless n = 1). This
description also works if n = 0.
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