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Part I

The language of ∞-categories
1 Introduction and motivation
In mathematics things often come organised into categories. When dealing with
homotopy-theoretic objects, or more generally objects with ‘higher structure’,
one wants a theory of ‘higher categories’ to deal with them effectively. Here’s a
simple motivating example.

Example 1.1. If X is a topological space, one would like to form a category
whose objects are the points of X and whose morphisms are the paths. Compo-
sition of paths isn’t associative, so the usual fix is to consider paths only up to
homotopy. We then obtain a category, the fundamental groupoid of X. The
endomorphism group of an object x of this category is then the fundamental
group π1(X,x) of X based at x.

However, usually it is better to remember information rather than quotient
out by it: if G is a group acting on a set S it is much more profitable to remember
the set with action (S, ρ) rather than the quotient set S/G. So we’d like to think
of homotopies as ‘higher morphisms’ that we can then quotient by to obtain the
fundamental groupoid.
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Heuristically, a higher category is a gadget with

• 0-morphisms = objects

• 1-morphisms between 0-morphisms

• 2-morphisms between 1-morphisms

• Et cetera. Maybe we stop at some point or maybe we go off to infinity.

Here’s a naive definition. A strict 1-category is a category. A strict n-
category is a category enriched in strict (n−1)-categories1; i.e. any two objects
have a strict (n− 1)-category of morphisms between them, and composition is
a functor of such categories.

This definition is not fit for purpose if n > 2. To see why, consider the
following example.

Example 1.2. If X is a topological space, we should be able to cook up a higher
category with

• Objects = points of X

• 1-morphisms = paths between points

• 2-morphisms = paths between paths = homotopies

• 3-morphisms = homotopies between homotopies

• etc.

This should deserve to be called the fundamental ∞-groupoid of X.

There’s a serious problem here that we’ve already encountered: composition
of paths is still not associative. So this example can’t fit into any kind of
enriched world. We need a structure where composition of 1-morphisms is not
associative, but is only associative “up to 2-morphisms”. These 2-morphisms are
themselves only associative up to 3-morphisms, et cetera.

Some terminology: an (n, r)-category is a category with m-morphisms for all
0 ≤ m ≤ n, and such that every m-morphism is invertible whenever m > r. It
is useful to allow n =∞ and even r =∞ in these definitions.

Example 1.3. a (1, 0)-category is a groupoid. A (1, 1)-category is the usual
notion of a category.

Remark 1.4. The ‘correct’ axiomatisation of a (2, 2)-category is the concept of
a 2-category. However every 2-category is equivalent to a strict 2-category -
this is a phenomenon unique to n = 2 and does not hold in generality.

1This leads one to the conclusion that a 0-category should be a set.
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The goal of this seminar is to axiomatise (∞, 1)-categories: i.e. objects
with n-morphisms for all n, but such that all k-morphisms are invertible for
k ≥ 2. Whenever I say “∞-category" I mean this as shorthand for the former.
Similarly we will call (∞, 0)-categories ∞-groupoids.

As an example: whatever an∞-groupoid is, a topological space should define
an ∞-groupoid via some sort of path category construction. Grothendieck’s
homotopy hypothesis (which appears in 1983’s Pursuing Stacks) states that
topological spaces should be equivalent to ∞-groupoids (for some notion of
“equivalence"2).

We will take the homotopy hypothesis as a desideratum that our theory of
∞-categories should satisfy. The upshot is that ∞-categories should be objects
that simultaneously generalise both categories and topological spaces. In this
course, we’re going to use simplicial sets as our common generalisation. These
are combinatorial objects that provide discrete models for topological spaces.
A quasicategory is a certain kind of simplicial set; these will be our preferred
model for ∞-categories. Quasicategories were originally introduced by Joyal
and developed extensively by Lurie. Somewhat abusively I will often treat
‘quasicategory’ and ‘∞-category’ as synonyms.

Loosely, a simplicial set X is an object which consists of a set Xn of n-
simplices for all n, linked together by face and degeneracy maps. A topo-
logical space Y has a singular simplicial set which at level n is the set of
n-simplices in Y . This is closely related to the singular chain complex of Y
which computes homology. A category C has a nerve which at level n is the
set of strings of n composable morphisms in C. A quasicategory is then a
certain kind of simplicial set which generalises both of these constructions.

Example 1.5. Any∞-category C has a homotopy category hC, defined roughly
by flattening all of the higher morphisms to force composition to be strictly
associative. For example, if A is a ring then there’s an infinity-category D(A)
whose homotopy category hD(A) is the usual derived category. If C is any
infinity-category with enough (co)limits, then one can define suspension and
loop functors, and one says that C is stable if they are inverse autoequivalences.
For example, D(A) is stable, with suspension given by [1] and looping by [−1].
If C is a stable infinity-category, then hC is canonically a triangulated category,
and the usual problems that one faces with triangulated categories disappear:
stable infinity-categories have functorial cones, functor categories are stable, et
cetera. So D(A) is much nicer to work with than hD(A), and indeed one is
implicitly using the higher-categorical structure when one computes things like

2Precisely what ‘equivalence’ should mean here is thorny: ∞-groupoids should naturally
fit into a ∞-category, and the ∞-categories of ∞-groupoids and topological spaces should be
equivalent. But now we need to decide what it means for two ∞-categories to be equivalent,
so we’ve just moved the problem. The solution taken in practice is to prove all of these
statements with respect to a specific fixed model of higher categories.
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RHom (as opposed to just Ext). The canonical non-algebraic example of a
stable infinity-category is Sp, the category of spectra (in fact this is actually
the derived category of modules over the sphere spectrum, which is a ring in an
appropriate sense).

1.1 Other models
The most naive definition of an∞-category is a category enriched in topological
spaces. This can be made to work but has some difficulties - topological spaces
are difficult analytic objects whereas we’d prefer something more discrete. A
better definition, worked on by Bergner, is as a category enriched in simplicial
sets.

Rezk introduced (complete) Segal spaces as models for ∞-categories. These
are certain kinds of bisimplicial set, which at level n is supposed to behave
like the space of strings of n composable morphisms. These are particularly
amenable for generalisation to a definition of to (∞, k)-categories.

DG categories are models for linear ∞-categories.

Model categories are presentations for certain kinds of ∞-categories. More
generally, a category with weak equivalences can be viewed as a presentation
of an ∞-category: given a category C with weak equivalences W there is a
simplicial localisation (or hammock localisation C[W−1] which is an ∞-
category which ‘enhances’ the usual 1-categorical localisation.

Riehl and Verity are developing a synthetic theory of ∞-categories.

A subtle question is: in what sense are these “models” of a “theory” of ∞-
categories? In all of the above cases, the models themselves form a quasicategory
(often - even better - a model category), and it has been proved that these
quasicategories are all equivalent. Bergner has a nice survey article for those
interested in the comparisons between different models. Toën also has some
good papers.

2 Simplicial sets
We develop the basic theory of simplicial sets, which will form the backbone of
our approach to ∞-categories.

2.1 First definitions
Let ∆ denote the category of nonempty finite ordinals. Concretely, the objects
of ∆ are the posets [n] = {0 < 1 < · · · < n} for n ∈ N and the morphisms are
the monotone maps. We call ∆ the simplex category.
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A simplicial object in a category C is a functor ∆op → C. The collection
of simplicial objects in C forms a category sC := Fun(∆op, C).

A cosimplicial object in a category C is a functor ∆ → C. The collection
of simplicial objects in C forms a category cC := Fun(∆, C).

We will mostly be interested in simplicial sets. These are discrete/combinatorial
models for topological spaces and are the basic objects of the theory of quasi-
categories. Briefly, simplicial sets are to ∞-category theory what sets are to
1-category theory.

A simplicial set X is thus a collection Xn of sets, one for each n, with a
collection of maps between them (which we will describe soon). We refer to Xn

as the set of n-simplices of X. A vertex is a 0-simplex.

We tend to use subscripts to denote simplicial things and superscripts to
denote cosimplicial things.

Example 2.1. The Yoneda embedding ∆ → sSet yields for each n a simplicial
set Hom(−, [n]). We refer to this simplicial set as the standard n-simplex
∆n. The Yoneda lemma yields an isomorphism Hom(∆n, X) ≃ Xn.

sSet is complete and cocomplete; this follows from it being a presheaf cate-
gory.

2.2 Topological simplices
For all n, let ∆n ⊆ Rn+1 be the subspace cut out by the equations x0+· · ·xn = 1
and xi ≥ 0. So ∆0 is a point, ∆1 is a line segment in R2, ∆2 is a triangle in R3,
and ∆3 is homeomorphic to a solid tetrahedron in R3 (which is of course itself
homeomorphic to a solid 3-ball).

We picture the standard ∆n as the topological space ∆n. Note that the
simplices of a simplicial set come with an order, so this picture does not capture
all the data. Typically when drawing simplicial sets, we assign directions to
the 1-simplices but not the higher ones - this captures the invertibility of r-
morphisms for r ≥ 2.

2.3 Structure of ∆
For each n ≥ 0 and each 0 ≤ i ≤ n + 1 there is an injective coface map

σ : [n] → [n + 1] that misses i. For each n > 0 and each 0 ≤ i ≤ n there is a
surjective codegeneracy map δ : [n+1]→ [n] which sends both i and i+1 to
i. These maps generate ∆. One can work out the identities they satsify; these
are known as the cosimplicial identities. A cosimplicial object in C is thus
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the same thing as a collection Xn ∈ C together with a collection of coface and
codegeneracy maps satisfying the cosimplicial identities.

Dually a simplicial object in C is thus the same thing as a collection Xn ∈ C
together with a collection of face and degeneracy maps satisfying the sim-
plicial identities.

Call a simplex of X degenerate if it is in the image of a degeneracy map. A
degenerate n-simplex of X is precisely an n+1-simplex of X that has one of its
edges collapsed to a point - this forces some adjacent 2-simplices, 3-simplices,
etc. to also collapse. When drawing simplicial sets one typically omits the
degenerate simplices.

Example 2.2. Fix n ∈ N. For m > n, all m-simplices of ∆n are degenerate.
There is a unique nondegenerate n-simplex, corresponding to the interior.

Exercise: count the nondegenerate m-simplices of ∆n.

2.4 Categories of simplices
If X is a simplicial set, its category of simplices el(X) is the category of
elements of the functor X: concretely, the objects are the morphisms ∆n → X
and a morphism from ∆n → X to ∆m → X is a morphism ∆n → ∆m making
the obvious diagram commute.

There is a forgetful functor J : el(X)→ sSet which sends a morphism to its
domain.

Proposition 2.3. Every simplicial set is the colimit of its simplices: there is a
natural isomorphism X ∼= colim J .

This proposition should be intuitively clear: a simplicial set is an object
consisting of a bunch of simplices, and if one takes all of the simplices of X and
glues them together in the way prescribed by X, then one obtains X again.

We will often somewhat abusively write X ∼= colimel(X) ∆
n.

2.5 New simplicial sets from old
One can view a set X as a simplicial set by taking X0 = X and adding in

degenerate higher simplices - one of each dimension for each element of X. One
calls such simplicial sets discrete.

If X is a simplicial set, the n-skeleton of X is obtained from X by throwing
away all nondegenerate m-simplices of X for m > n. We denote this sknX.
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We have sk0X = X0.

The boundary ∂∆nof ∆n is defined by taking ∆n and removing the unique
n-dimensional nondegenerate simplex. Geometrically, this looks like an (n− 1)-
sphere. There’s a more combinatorial description of this.

The spine of ∆n is the subset of sk1∆n containing all the vertices and the
1-simplices of the form [i, i+ 1]. Note that this looks like the poset [n].

Note that we have an ascending filtration

sk0X ↪→ sk1X ↪→ sk2X ↪→ · · ·

whose colimit is X. This is a cell decomposition of X which exhibits X as a
filtered colimit of its simplices.

2.6 Horns and fillers
Let n ≥ 1. The (n, i)-horn Λn

i is obtained from ∂∆n by removing the top-
dimensional face (which is an (n − 1)-simplex) opposite the vertex i. Again,
there is a more combinatorial description of this. Note that a 2-horn Λ2 looks
like the horns of a stag, whereas a 3-horn Λ3 looks like a drinking horn.

Exercise: show that the inclusion Λn
i ↪→ ∆n induces an isomorphism on

(n− 2)-skeleta.

A horn is outer if i = 0 or i = n and inner otherwise. The 1-skeleton of an
inner 2-horn looks like a pair of composable morphisms, whereas the 1-skeleton
of an outer 2-horn has simplices which go the ‘wrong way’.

Let Λn
i ↪→ X be a horn in a simplicial set X. We say that this horn admits

a filler if this map extends to a map ∆n → X.

Exercise: show that ∆n is what you get if you start from its spine and itera-
tively fill inner horns.

2.7 Singular simplicial sets
The collection ∆• of standard topological simplices fits together into a cosim-

plicial space, the standard cosimplicial space. By the machinery of the
nerve-realisation adjunction detailed in a later section, we obtain a functor
Sing• : Top → sSet which sends Y to the simplicial set whose n-simplices
are Hom(∆n, Y ).
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Again by the general nerve-realisation machinery, we obtain an adjoint to
Sing•, the geometric realisation functor. Informally, it works as follows. To
construct |X|, first take the disjoint union of a bunch of standard topological
simplices - one for every simplex of X. Then one glues these together along the
face and degeneracy maps: face maps identify one simplex as a face of a larger
one and degeneracy maps collapse edges of simplices.

Example 2.4. if X is a discrete simplicial set, then |X| is homeomorphic to the
discrete space X.

Exercise: let Y be a simplicial complex. Define a simplicial set X such that
|X| is homeomorphic to Y .

Theorem 2.5. If Y is a topological space then the adjunction unit Y → |Sing•Y |
is a weak homotopy equivalence.

The proof of the above theorem is nontrivial and requires some simplicial
homotopy theory. The singular simplicial set-geometric realisation adjunction
is a Quillen equivalence between topological spaces and simplicial sets. (Really,
when I say topological spaces I mean a ‘convenient category’ of topological
spaces; something like CGWH spaces).

3 Nerves of categories
Quasicategories - our models for∞-categories - will be certain kinds of simplicial
sets. In particular we’d better be able to view a category as a simplicial set. In
this section we describe how to do this.

3.1 Nerves
Definition 3.1. Let C be a (small) category. The nerve of C is the simplicial
set whose n-simplices are given by the strings of n composable morphisms in C.
We think of such a string as the spine of the n-simplex. The face maps insert
identity morphisms. The inner degeneracy maps compose adjacent morphisms
and the outer degeneracy maps remove the outermost morphisms. One can
check using the simplicial identities that this makes NC into a simplicial set. Or
one can use the nerve-realisation machinery described in A.10 with the standard
cosimplicial category.

So N(C)0 is the set of objects of C, and N(C)1 is the set of morphisms.

Exercise: if x is an object of c, then we have s0x = x
id−→ x. If e = (x→ y) is

a morphism of C, then we have d0e = y and d1e = x.

Definition 3.2. A simplicial set X is a Kan complex if all horns in X have
fillers. A simplicial set is a weak Kan complex if all inner horns in X have
fillers.
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Remark 3.3. We will later see that “∞-groupoid" is a synonym for Kan complex
and “∞-category" is a synonym for weak Kan complex.

Theorem 3.4 (the Nerve Theorem3). A simplicial set is the nerve of a category
if and only if all inner horns admit unique fillers.

Proof. Let C be a category and σ : Λn
i → N(C) be an inner n-horn. Note that

since σ is inner we must have n ≥ 2. The 1-skeleton of an inner n-horn in NC
is a string of n composable morphisms, and this corresponds to an n-simplex
filling the horn. The filler is unique as composition is unique.

Conversely, if X is a simplicial set for which all inner horns admit unique
fillers, we’re going to write down a category C whose nerve is X. The objects
of C are the vertices of X. The morphisms of C are the 1-simplices; source and
target are given by the degeneracy maps. Filling inner 2-horns uniquely gives
us composition and filling inner 3-horns uniquely tells us that composition is
associative.

3.2 Groupoids and Kan complexes
Our goal in this section will be to prove the following theorem:

Proposition 3.5. Let C be a category. Then N(C) is a Kan complex if and
only if C is a groupoid.

The following Lemma will be useful.

Lemma 3.6. Let n ≥ 2 and let f : sk2∆
n → N(C) be any map. Then f has a

unique extension to a map f̃ : ∆n → N(C).

Proof. The map f determines objects x0, . . . , xn in C and maps fij : xi → xj

for i < j such that fjk ◦ fij = fik. This defines a functor [n] → C given by
sending [i] to xi and a map i→ j to fij , i.e. a map ∆n → N(C).

Before we begin the proof we fix some terminology: a left horn is a horn of
the form Λn

0 and a right horn is a horn of the form Λn
n.

Proof of 3.5. Suppose first that N(C) is a Kan complex. A left 2-horn in NC
is the same as a span y ← x → z in C. A filling of this left 2-horn is the same
as a morphism y → z making the triangle commute. In particular if f : x → y

is any morphism then filling the span y
f←− x

id−→ x shows that f is a split
mono. Similarly, filling right 2-horns shows that every morphism is a split epi.
In particular every morphism in C is an isomorphism - that is, C is a groupoid.

3This does not appear to be a standard term, but it’s a very fundamental theorem and
needs a name.
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Now we need to show the converse. Suppose that C is a groupoid. We know
by the Nerve Theorem that N(C) has fillers for inner horns, so we just need to
check that outer horns admit fillers. Outer 1-horns in NC are just objects in
C, so we can fill these with identity morphisms. Similarly to the above, we can
fill outer 2-horns since C is a groupoid.

If n ≥ 4 then by 3.6 we see that any n-horn admits a filler. So we just need
to check that we can fill outer 3-horns.

A left 3-horn in NC is the same as a collection of objects x0, . . . , x3 and
morphisms [ij] : xi → xj for i > j such that the triangles [012], [013] and [023]
all commute. To fill this to a 3-simplex, by 3.6 it is enough to show that the
triangle [123] commutes. To do this, consider the composition

[32][21][10] = [32][20] = [30] = [31][10]

Since [10] is a split epi by assumption, this implies that [32][21] = [31] as desired.
Similarly, one can fill right horns using that every morphism in C is a split
mono.

Corollary 3.7. A simplicial set X is the nerve of a groupoid if and only if all
horns in X admit unique fillers.

Proof. If the condition on fillers holds, then the Nerve Theorem implies that X
is the nerve of a category C and 3.5 implies that C is a groupoid. Conversely if
C is a groupoid then the fact that inverses are unique implies that the horns in
N(C) must have unique fillers.

3.3 Homotopy categories
Since Cat is cocomplete, the nerve-realisation technology of A.10 gives us an
adjoint h : sSet→ Cat to the nerve functor. Let’s examine this in more detail.

Definition 3.8. Let X be a simplicial set. A map u : X → N(C) exhibits C
as the homotopy category of X if for all categories D the composition

Cat(C,D)
∼=−→ sSet(N(C), N(D))

u∗

−→ sSet(X,N(D))

is a bijection.

It follows directly from the definition that such a homotopy category C
exists: indeed it is the value of the functor h on X. Moreover, the map u is the
unit of the nerve-realisation adjunction.

Let’s see an explicit construction of the homotopy category. Take the objects
of hX to be X0. For every edge e of X, add a morphism e : d1e → d0e. This
gives us a directed graph. Complete this under composition to obtain a category.
We then quotient this category by relations coming from the 2-simplices of X: if
x is a vertex then we impose [s0x] = idx and if σ is a 2-simplex then we impose
[d1σ] = [d0σ][d2σ].

12



Exercise: the counit hN(C)→ C is an isomorphism.

Remark 3.9. For every simplicial set X the natural map sk2X → X induces an
isomorphism h(sk2X)→ h(X).

Example 3.10. Let X be a topological space. Then π≤1X is the homotopy
category of Sing•X.

Example 3.11. Let X be a 1-skeletal simplicial set, i.e. a directed graph. Then
hX is the path category of X; i.e. the free category on the directed graph X.

Example 3.12. If X is a quasicategory (i.e. weak Kan complex) then hX has
a reasonable description: the morphisms are certain equivalence classes of the
edges of X. We’ll see more next week.

4 Quasicategories

4.1 Basic definitions
Definition 4.1. An ∞-category is a simplicial set C for which every inner
horn admits a filler.

Definition 4.2. An ∞-groupoid is a simplicial set C for which every horn
admits a filler.

Remark 4.3. Note that an∞-category is the same thing as a weak Kan complex,
and an ∞-groupoid is the same thing as a Kan complex.

Example 4.4. If C is a category then NC is an ∞-category. If C is a groupoid
then NC is an ∞-groupoid.

Example 4.5. If X is a topological space then SingX is an ∞-groupoid.

An object of an ∞-category C is a vertex of C. A morphism of C is
a 1-simplex of C. The source of a morphism f is d1f whereas the target
is d0f . The identity morphism of an object x is the degenerate 1-simplex
s0x. Exercise: check that these definitions agree with the usual ones when C
is the nerve of a 1-category. Exercise: work out what these mean explicitly for
C = SingX.

Let f : x → y and g : y → z be two morphisms in an ∞-category C. A
composition of f and g is a morphism h : x → z such that the induced map
∂∆2 → C admits a lift to a map ∆2 → C. We picture a map ∂∆2 → C as a
possibly noncommutative triangle in C and a map ∆2 → C as a commutative
triangle.

Lemma 4.6. Compositions exist.

Proof. Let f, g be as above. They define a map Λ2
1 → C which, since C is an

∞-category, admits a lift to a 2-simplex σ : ∆2 → C. Then d1σ is a composition
of f and g.

13



Remark 4.7. Warning: compositions need not be unique! In particular, there
need not be any sort of function ◦ that sends a pair f, g to a composition. We
will see later that compositions are unique up to a notion of homotopy, and
moreover that compositions are unique precisely when C is a 1-category.

Example 4.8. Let X be a topological space. Let f, g be two composable mor-
phisms of X, i.e. a path x → y and a path y → z. Then a path x → z is a
composition of f and g if and only if it is homotopic to gf .

4.2 Opposites
Recall that we can regard the simplex category ∆ as a cosimplicial object in
categories, i.e. a functor ∆ → Cat. Consider the composition of this functor
with the endofunctor op : Cat → Cat. Observe that [n]op is canonically iso-
morphic to [n] (just send i 7→ n − i), so the image of this functor lands in ∆.
Hence we obtain an endofunctor Op :∆→ ∆.

Let S be a simplicial object in a category C. The opposite of S is the
simplicial object Sop given by ∆op Op−−→ ∆op S−→ C. Concretely, if S is a simplicial
set then Sop is the simplicial set with n-simplices those of S, and whose face
and degeneracy maps are given by dni = dnn−1 and sni = snn−1.

If C is an ∞-category then the opposite of C is the simplicial set Cop. Note
that this is also an ∞-category, since the opposite of an inner horn inclusion is
an inner horn inclusion. Moreover Cop is an ∞-groupoid if and only if C was -
the opposite of a left horn inclusion is a right horn inclusion, and vice versa.

Example 4.9. If C is a category, an n-simplex of NC determines an n-simplex
of N(Cop). This gives an isomorphism N(Cop) ∼= N(C)op.

Example 4.10. Let X be a topological space. Then there is a canonical isomor-
phism Sing(X) ∼= Sing(X)op, induced by the homeomorphism ∆n → ∆n which
sends (t0, . . . , tn) to (tn, . . . , t0).

4.3 Homotopy
Example 4.8 indicates that there ought to be some notion of homotopy be-
tween morphisms of an ∞-category such that composition is well-defined up to
homotopy. We mimic the topological definitions in the simplicial world.

Definition 4.11. Let f, g : x→ y be two parallel morphisms in an ∞-category
C. Adding the identity morphism on y defines a noncommutative triangle σ :
∂∆2 → C. A homotopy from f to g is a 2-simplex σ′ : ∆2 → C lifting σ. Say
that f and g are homotopic if there exists a homotopy between them.

Exercise: if C is a 1-category, then two parallel morphisms in NC are ho-
motopic if and only if they are equal.
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Exercise: if X is a topological space, then two parallel paths in X are homo-
topic as morphisms if and only if they are homotopic relative to their common
endpoints. (Hint: ∆2 is homeomorphic to [0, 1]× [0, 1].)

Proposition 4.12. Homotopy is an equivalence relation on morphisms.

Proof. Reflexivity is clear: the degenerate 2-simplex s1f is a homotopy from
f to itself. For symmetry, let σ be a 2-simplex witnessing a homotopy f → g
of maps x → y. Glue σ to the two degenerate 2-simplices s1f and s0 idy to
obtain a 3-horn Λ3

1 in C with x at 0 and y at every other vertex. Fill in this
3-horn with a 3-simplex σ′. The 2-simplex d1σ

′ is then a homotopy g → f . For
transitivity, let f, g, h be three parallel morphisms x→ y and assume that f is
homotopic to g and g is homotopic to h. Glue the two 2-simplices witnessing
these homotopies together along g and glue on the constant 2-simplex on y to
obtain a 3-horn Λ3

2. Fill this horn with a 3-simplex σ′; the desired homotopy
f → h is then d2σ

′.

Exercise: two parallel morphisms of C are homotopic if and only if they are
homotopic as morphisms of Cop. (Hint: this is a similar diagram chase. The
hardest part is unwinding what it means for f, g to be homotopic in Cop).

Proposition 4.13. Let f : x → y and g : y → z be two morphisms in an
∞-category. If h : x → z is a composition of f and g, then any morphism h′

parallel to h is a composition of f and g if and only if h′ ≃ h.

Proof. Suppose first that h ≃ h′. Let σ (resp. σ′) be a 2-simplex in C which
witnesses h (resp. h′) as a composition of f and g. Glue σ and σ′ along f and
glue on the degenerate 2-simplex s0g to obtain a 3-horn Λ3

1 in C. Lifting to a
3-simplex and taking the first face gets us a homotopy h ≃ h′.

Conversely, suppose that h is homotopic to h′ via a witnessing 2-simplex τ .
This time we glue σ to τ along h and add in s0g to get a copy of Λ3

2 in C; lifting
and taking faces gives us a 2-simplex witnessing h′ as a composition of f and
g.

In other words, the homotopy classes of morphisms are precisely the ‘compo-
sition classes’. This indicates that if we take C and quotient out by homotopies,
we should obtain a genuine 1-category. Showing this is the goal of the next
section.

4.4 The homotopy category
Homotopy respects composition:

Proposition 4.14. Let C be an ∞-category. Let f, f ′ : x → y be two homo-
topic morphisms and let g, g′ : y → z be two homotopic morphisms. If h is a
composition of f and g and h′ is a composition of f ′ and g′ then h is homotopic
to h′.
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Proof. If h′′ is a composition of f and g′, it suffices to show that h′′ is homotopic
to both h and h′. We will show that h′′ ≃ h; the other case is left as an exercise
to the reader. Take 2-simplices σ3 witnessing h as a composition, σ2 witnessing
h as a composition, and σ0 witnessing a homotopy g → g′. Glue these together
into an inner 3-horn [σ0,−, σ1, σ2]. Extend this to a 3-simplex and take the first
face to obtain a 2-simplex σ1 which is a homotopy from h to h′′.

Definition 4.15. Let C be an ∞-category. We want to define a 1-category
hC with objects the objects of C, and with morphisms the homotopy classes of
morphisms in C. Composition is inherited from C and is well-defined by the
previous Proposition.

Proposition 4.16. If C is an ∞-category, then hC is a 1-category.

Proof. We need to prove that composition is associative and admits identities.
The latter is left as an exercise. To show the former, take three morphisms
f : x → y, g : y → z, and h : z → w. Let u be a composition of f and g,
v a composition of g and h, and w a composition of f and v. It suffices to
show that w is a composition of u and h. To do this, choose three witnessing
2-simplices for u, v, w and glue them together to get an inner 3-horn whose spine
is [f, g, h]. Lift this horn to a 3-simplex and take the first face to obtain the
desired witness.

Example 4.17. If D is a 1-category, there is a natural equivalence D ∼= hND.

The assignment C 7→ hC is functorial: a map of simplicial sets F : C → C ′

determines a map F0 on objects of hC and a map F1 on morphisms of hC,
which respects composition since F is a map of simplicial sets and hence respects
witnessing 2-simplices.

Theorem 4.18. Let C be an ∞-category. Then hC is canonically equivalent
to hC, the homotopy category of the simplicial set C.

Proof. We need to check that hC satisfies the universal property of the ho-
motopy category: we will show this by giving unit and counit morphisms and
checking that the zigzag identities for an adjunction are satisfied.

If C is an∞-category and σ is an n-simplex of C then the spine of σ defines a
composable string of n morphisms in hC; in other words an n-simplex of N(hC).
This gives a natural map ηC : C → N(hC); this will be our adjunction unit. If
D is a 1-category, observe that sending a morphism [f ] to f defines a natural
isomorphism ϵD : hND → D; this will be our adjunction counit.

We need to check that the zigzag identities hold. The natural map

hC → hNhC → hC

is the identity on objects and morphisms and is hence is the identity functor.
For the other map, take an n-simplex σ of ND; i.e. a string of n composable
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morphisms in D. The natural map ND → NhND sends σ to the n-simplex
σ′ of NhND given by the corresponding string of composable morphisms in
hND ∼= D. The natural map NhND → ND sends this n-simplex back to σ.
Hence the composition

ND → NhND → ND

is the identity as required.

4.5 Isomorphisms
Definition 4.19. A morphism f in an∞-category C is an isomorphism if [f ]
is an isomorphism in hC.

It is immediate that isomorphisms satisfy the two-out-of-three property.

Exercise: if C is a 1-category then a map is an isomorphism in NC if and
only if it is an isomorphism in C.

Definition 4.20. Let f be a morphism in an ∞-category. A left homotopy
inverse of f is a morphism g such that [g][f ] = id in hC. A right homotopy
inverse is a g such that [f ][g] = id in hC. A homotopy inverse of f is a
morphism which is both a left and a right homotopy inverse.

Proposition 4.21. Let f be a morphism in an ∞-category. The following are
equivalent:

1. f is an isomorphism.

2. f admits a homotopy inverse.

3. f admits both a left and a right homotopy inverse.

Proof. The equivalence of (1) and (2) are clear. Note that (2) and (3) both
only depend on the homotopy class of f . So the equivalence of (2) and (3)
follows from the fact that a morphism in a 1-category is an isomorphism if and
only if it has both a left and a right inverse: if uv = id and vw = id then
u = uvw = w.

Proposition 4.22. If C is an ∞-groupoid, then every morphism in C is an
isomorphism.

Proof. Given a morphism f : x → y, filling the left horn formed by f and s0x
yields a right homotopy inverse of f . Similarly, filling the right horn formed by
f and s0y yields a left homotopy inverse of f . So f is an isomorphism.

If X is an∞-groupoid then hX is hence a groupoid; we denote this groupoid
by π≤1X and refer to it as the fundamental groupoid of X.

Example 4.23. If X is a topological space, we have π≤1SingX ∼= π≤1X, the
usual fundamental groupoid of X.
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5 Functors
Definition 5.1. A functor of ∞-categories C → D is just a map of simplicial
sets F : C → D. For now, we denote the set of such maps by fun∞(C,D).

Example 5.2. If C and D are 1-categories, there is a natural bijection

Fun(NC,ND) ∼= fun∞(C,D)

Example 5.3. If C is an ∞-category and D is a 1-category, then there is a
natural bijection

Fun(hC,D) ∼= fun∞(C,ND)

Example 5.4. If X is a topological space and C is an ∞-category, then there is
a natural bijection Fun∞(C,SingX) ∼= Top(|C|, X).

Of course, functors tend to come with more structure: they are themselves
organised into functor categories. The goal of this section is to prove the ∞-
categorical version of this fact: we will show how to make the collection of
functors between two ∞-categories into an ∞-category.

5.1 Functor categories
Definition 5.5. If S, T are simplicial sets, then we define a simplicial set
Fun(S, T ) by setting Funn(S, T ) := sSet(∆n × S, T ). Note that this is the
nerve of T with respect to the cosimplicial simplicial set ∆• × S.

Lemma 5.6. Let U, S, T be simplicial sets. Then there exists a natural bijection

sSet(U,Fun(S, T )) ∼= sSet(U × S, T ).

Proof. Write U as a filtered colimit of its simplices and use that filtered colimits
commute with products in Set to deduce that it suffices to check on U = ∆n.
But this is clear by definition.

Remark 5.7. The construction Fun(S, T ) is part of a Cartesian closed symmetric
monoidal structure on sSet.

Proposition 5.8. Let C,D be two 1-categories. Then there is a natural iso-
morphism

N Fun(C,D) ∼= Fun(NC,ND).

Proof. We have isomorphisms

Nn Fun(C,D) ∼= Cat([n],Fun(C,D)) by definition
∼= Cat([n]× C,D) by hom-tensor in Cat
∼= sSet(N([n]× C), ND) by adjunction
∼= sSet(∆n ×NC,ND) since N preserves limits
∼= Fun(NC,ND)n by definition

naturally in n.
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The main theorem of this section is:

Theorem 5.9. Let S be a simplicial set and D be an ∞-category. Then
Fun(S,D) is an ∞-category.

Corollary 5.10. Let C,D be ∞-categories. Then Fun(C,D) is an ∞-category.

The main theorem is difficult to prove and will require some discussion of
lifting properties.

5.2 Trivial Kan fibrations
Definition 5.11. A map p : X → Y of simplicial sets is a trivial Kan fibra-
tion if every commutative diagram

∂∆n X

∆n Y

p

admits a lift. In other words, if a boundary of an n-simplex in X admits a filler
in Y , then it admits a filler in X.

Proposition 5.12. A map is a trivial Kan fibration if and only if it lifts against
all monos.

Proof. The idea is that any mono of simplicial sets can be written as a filtered
colimit of boundary inclusions.

Lemma 5.13. Let f be a trivial Kan fibration and S a simplicial set. Then
Fun(S, f) is a trivial Kan fibration.

Proof. By the hom-tensor adjunction, an arbitrary map g lifts against Fun(S, f)
if and only if g × S lifts against f . So let g be a mono; hence g × S is also a
mono. In particular, g × S lifts against f and so g lifts against Fun(S, f) as
desired.

5.3 Troughs
Definition 5.14. The m-trough is the simplicial set

Trm := (∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2)

There is a natural inclusion Trm ↪→ ∆m ×∆2.

Example 5.15. Tr0 is simply Λ2
1. The 1-trough Tr2 consists of ∆1×Λ2

1 glued at
each end to a copy of ∆2.

Lemma 5.16 (Joyal). Let f : X → Y be a map of simplicial sets. The following
are equivalent:
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1. f satisfies the right lifting property with respect to all inner horn inclu-
sions.

2. f satisfies the right lifting property with respect to all trough inclusions.

The proof is rather technical and involved, so we omit it.

5.4 Proof of the main theorem
Theorem 5.17 (Joyal). Let S be a simplicial set. The following are equivalent:

1. S is an ∞-category.

2. The inclusion Λ2
1 ↪→ ∆2 induces a trivial Kan fibration

Fun(∆2, S)→ Fun(Λ2
1, S).

Proof. S is an ∞-category if and only if S → ∆0 lifts against all inner horn
inclusions. By 5.16, S is hence an ∞-category if and only if S → ∆0 lifts
against all trough inclusions. But by adjointness, a lift in the diagram

Trm S

∆m ×∆2 ∆0

is equivalent to a lift in the diagram

∂∆m Fun(∆2, S)

∆m Fun(Λ2
1, S).

Exercise: visualise this for m = 1.

Proof of 5.9. Let S be any simplicial set and D an ∞-category. We wish to
show that Fun(S,D) is an ∞-category. Joyal’s theorem tells us that we need
only check that the natural map

Fun(∆2,Fun(S,D))→ Fun(Λ2
1,Fun(S,D))

is a trivial Kan fibration. But using the closed monoidal structure, this map is
equivalent to the map

Fun(S,Fun(∆2, D))→ Fun(S,Fun(Λ2
1, D))

Since Fun(S,−) preserves trivial Kan fibrations by 5.13, we are done.
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5.5 Uniqueness of composition
Recall that composition of morphisms in an ∞-category is commutative up
to homotopy. As an application of the previous technology, we’ll refine this
statement: there’s actually a topological space (more accurately, a simplicial
set) of compositions, and it’s contractible.

Definition 5.18. A Kan complex X is called contractible if X → ∆0 is a
trivial Kan fibration.

Example 5.19. The empty simplicial set is a contractible Kan complex.

Example 5.20. Let K be a connected Kan complex. If K is contractible then
|K| is a weakly contractible topological space, in the sense that all homotopy
groups of |K| vanish. This is because the geometric realisation of the boundary
inclusion ∂∆n → ∆n is the inclusion Sn−1 ↪→ Dn. In fact, something stronger
is true: let X be a path connected topological space. Then Sing•X is con-
tractible if and only if X is weakly contractible. To prove this requires a little
simplicial homotopy theory: a Kan complex K has homotopy groups π∗K, de-
fined purely combinatorially, and they agree with π∗|K|. Moreover they detect
contractibility.

Proposition 5.21. Let p : X → Y be a trivial Kan fibration. Then for all
y ∈ Y , the fibre Xy := X ×Y y is a contractible Kan complex.

Proof. Trivial Kan fibrations are closed under pullbacks, since they’re defined
by a lifting property. But the pullback of p along y is Xy → ∆0.

Let f, g be a pair of composable morphisms in an ∞-category, so that they
define an inner 2-horn σ : Λ2

1 → C. Then the simplicial set

K := Fun(∆2, C)×Fun(Λ2
1,C) {σ}

is the space of compositions of f and g: the zero-simplices are given precisely by
the 2-simplices τ : ∆2 → C which restrict to σ along the canonical embedding
Λ2
1 → ∆2. This simplicial set is contractible:

Proposition 5.22. Let f, g be a pair of composable morphisms in an ∞-
category. Then Fun(∆2, C)×Fun(Λ2

1,C) {(g,−, f)} is a contractible Kan complex.

Proof. The simplicial set in question is the fibre of the map p : Fun(∆2, C) →
Fun(Λ2

1, C) above the vertex defined by f and g. By 5.17, the map p is a trivial
Kan fibration and hence its fibres are contractible Kan complexes.

6 Commutative diagrams
In this section we’ll study commutative diagrams in ∞-categories, especially
commutative diagrams indexed by 1-skeletal simplicial sets, since we will be
able to compare these with 1-categorical diagrams.
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An important piece of intuition is that commutativity of a given diagram
should be viewed as extra structure rather an a property of that diagram.
For example, let x, y, z be three objects of an ∞-category C, with morphisms
f : x→ y, g : y → z, and h : x→ z. This data defines a morphism σ : ∂∆2 → C.
We say that this triangle commutes if there is a map σ′ : ∆2 → C extending σ,
i.e. if there is a 2-simplex gf =⇒ h witnessing h as a composition of f and g.
Since there may be many such 2-simplices σ′, one may need to make the choice
of a particular one. This is structure rather than property!

6.1 Diagrams in ∞-categories
Definition 6.1. Let K be a simplicial set and C an∞-category. A K-indexed
diagram in C is a map K → C of simplicial sets.

Example 6.2. Let K ⊆ ∆1×∆1 be the simplicial set (∂∆1×∆1)∪ (∆1× ∂∆1).
Then a K-indexed diagram in C is a possibly noncommutative square in C. We
view ‘commutativity’ of such a diagram as extra data; i.e. a lift of this diagram
to a ∆1 ×∆1-indexed diagram. Concretely, a square

x y

z w

f

g r

s

in C is commutative if we are given a morphism q : x → w together with two
homotopies rf ≃ q and q ≃ sg. Since there are many such choices of morphisms,
commutativity is a structure of a diagram rather than a property.

In this section we will mainly focus on diagrams indexed by one-dimensional
simplicial sets, since these can be interpreted in terms of 1-categorical informa-
tion.

6.2 Quivers and path categories
Recall that a quiver is a directed multigraph, i.e. a set of vertices V and
edges E with source and target maps s, t : E → V . In particular we allow
multiple edges between vertices and loops at a single vertex.

There is an equivalence between the category sSet≤1 of one-dimensional sim-
plicial sets and the category of quivers: given a quiver Q the corresponding
simplicial set Q• has vertices V and nondegenerate 1-simplices given by E.

There’s a forgetful functor from the category of small categories to the cat-
egory of quivers: a category is in particular a quiver where one can compose
arrows. This functor has a left adjoint, the path category functor. Con-
cretely, if Q is a quiver then its path category Path[Q] is the category with
objects V and morphisms given by (finite length) paths in Q. Exercise: prove
the adjointness!
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Example 6.3. Let Q be the quiver 0 → 1 → 2. Then the (nerve of the) path
category of Q is the 2-simplex ∆2. More generally, if Q is the quiver 1→ · · · → n
then the path category of Q is ∆n, with Q embedded as the spine.

If Q is a quiver, there is a natural map of simplicial sets Q• → N•Path[Q]
which is the identity on 0-simplices and an injection on 1-simplices. Exercise:
show that this exhibits Path[Q] as the homotopy category hQ•.

6.3 Commutative diagrams in 1-categories
Before going to ∞-categories, we need to set our conventions for precisely what
a ‘commutative diagram’ in a 1-category is.

Definition 6.4. Let Q be a quiver and C a category. A (free) diagram in
C of shape Q is a functor Path[Q] → C. Equivalently, by adjointness, a free
diagram is a map Q• → N•C of simplicial sets. A free diagram commutes if
any two parallel paths in Q have the same image in C.

Example 6.5. Let Q be the quiver 1 ⇒ 2. A commutative diagram of shape Q
in a category C is nothing more than an arrow in C; the two edges of Q must
map to the same arrow of C.
Example 6.6. Let Q be the quiver with one vertex and one loop. A commutative
diagram of shape Q in a category C is nothing more than an object in C, since
the loop is parallel to the identity morphism.

Proposition 6.7. Let Q be a quiver and F : Path[Q] → C a free diagram.
Then F commutes if and only if it factors through a poset P .

When Q does not look like the previous two Examples, then one can write
down a universal such P concretely:

Definition 6.8. A quiver Q is thin if

1. Q has at most one edge between each pair of vertices.

2. Q has no (directed) cycles.

If Q is a thin quiver, then its vertex set V becomes a poset where we say
that u ≤ v if there is a path from u to v. If Q< denotes the associated category,
then there is a natural quotient map Path[Q]→ Q<

∼= which is the identity on
vertices and sends a path u→ v to the unique arrow u→ v in Q<.

Proposition 6.9. Let Q be a thin quiver and F : Path[Q]→ C a free diagram
in C of shape Q. Then F commutes if and only if it factors through the quotient
Path[Q]→ Q<.

Example 6.10. Let Q be the thin quiver

1 2

3 4
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The non-identity arrows in the path category of Q are

1 2

3 4

whereas the non-identity arrows in Q< are given by

1 2

3 4

In terms of simplicial sets, N•Path[Q] looks like

1 2

3 4

whereas N•Q< looks like
1 2

3 4.

6.4 Path categories revisited
Let Q be a quiver. Recall that Path[Q] is the homotopy category of the sim-
plicial set hQ•. In particular, if C is a 1-category then we have an isomorphism
Fun(Path[Q], C) ∼= Fun(Q•, N•C). We’d like an ∞-categorical version of this
statement. And indeed we have:

Theorem 6.11. Let Q be a quiver and C an ∞-category. Then the adjunction
unit u : Q• → N•Path[Q] induces trivial Kan fibration

Fun(N•Path[Q], C)→ Fun(Q•, C).

The proof relies on some technical calculations involving lifting properties.

Corollary 6.12. Let Q be a quiver and C an ∞-category. Given a vertex
F ∈ Fun(Q•, C), the fibre

Fun(N•Path[Q], C)×Fun(Q•,C) {F}

is a contractible Kan complex.
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Example 6.13. Let Q be the poset [n], so that Q• → N•Path[Q] becomes
the spine inclusion sp∆n ↪→ ∆n. If C is an ∞-category then Fun(∆n, C) →
Fun(sp∆n, C) is hence a trivial Kan fibration. When n = 2 this recovers one
direction of 5.17. In particular f : 0

f1−→ 1
f2−→ · · · fn−→ n is a Q•-shaped dia-

gram in C, it then follows that the space Fun(∆n, C)×Fun(sp∆n,C) {f} of ‘n-fold
compositions of f ’ is contractible.

Part II

Examples of ∞-categories
7 2-categories
Consider the category Cat of all small categories. The notion of isomorphism
here is too strict: we care whether two categories are equivalent, not whether
they’re isomorphic. What’s the natural framework to handle this?

One solution is to use a notion of 2-category; then Cat should become
a 2-category, with 2-morphisms the natural transformations and invertible 2-
morphisms the equivalences.

One other solution is to regard Cat as a category with weak equivalences
and formally invert them to obtain an ∞-category. Note that this discards
information about non-invertible natural transformations. One can also put
extra structure on top of this to get better control of the localisation, e.g. a
model structure (and indeed Cat does admit such a model structure, the most
famous being the folk or canonical model structure).

In fact, 2-categories have been well studied and are reasonably well under-
stood. From the above discussion, we expect a 2-category to give an (∞, 1)-
category by discarding the noninvertible 2-morphisms and then taking some sort
of nerve. In this section, we’ll show that this can indeed be done; in fact we’ll
produce a simplicial set from any 2-category C, which will be an ∞-category
precisely when C is a (2, 1)-category. We’ll also show that this nerve construc-
tion, the Duskin nerve, is fully faithful.

Really, a 2-category should be a certain kind of (∞, 2)-category via some sort
of nerve construction, and then one can truncate to obtain an (∞, 1)-category:
this won’t bother us here.

7.1 Strict 2-categories
The following is the most naïve definition of a 2-category.
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Definition 7.1. A strict 2-category is a category C enriched in categories,
i.e. a gadget with

• Objects x.

• For every pair of objects x, y a category C(x, y). We call objects of C(x, y)
1-morphisms or just morphisms. We call morphisms of C(x, y) 2-
morphisms.

• For every triple of objects x, y, z, composition functors

◦xyz : C(y, z)× C(x, y)→ C(x, z).

Note the order of the factors in the product.

• Identity 1-morphisms idx ∈ C(x, x). Note that we can also view these
objects as functors ∗ → C(x, x).

Satisfying the following conditions:

• Composition is strictly associative.

• There are equalities idx ◦− = idC(y,x) and − ◦ idx = idC(x,y).

Example 7.2. Cat is itself a 2-category (indeed the prototypical example). The
objects are the categories, and the hom-categories are given by functor cate-
gories.

Example 7.3. A category is a strict 2-category, where the hom-categories are
just regarded as sets (i.e. discrete categories).

Remark 7.4. There are some set-theoretic difficulties here which we will brush
under the rug. In particular the hom-categories should be small, in order to be
able to use standard category-theoretic arguments.

Given an object x in a strict 2-category, it has an endomorphism category
C(x, x) which is strict monoidal (since it’s a monoid in categories). Similarly,
given a strict monoidal category C, it has a delooping BC which is a one-object
strict 2-category. These constructions give an equivalence (in an appropriate
sense...) between strict monoidal categories and one-object 2-categories. In
particular, it is often useful to think of a strict 2-category as a ‘many-object
monoidal category’.

7.2 2-categories
Just like strict monoidal categories are often too rigid (think of Vectk with
the tensor product - it is only associative up to natural isomorphism!), strict
2-categories are often too rigid for our purposes. We need to introduce a weaker
concept. The following definition is due to Bénabou.

Definition 7.5. A 2-category C consists of:
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• Objects x.

• Hom-categories C(x, y).

• Composition functors and identity 1-morphisms as before.

• For every object x an invertible 2-morphism υx : idx ◦ idx → idx. Note
that there is no sense in which these are ‘natural in x’. These 2-morphisms
are known as the units.

• For every quadruple x, y, z, w, natural isomorphisms αxyzw between the
functors −◦ (−◦−) and (−◦−)◦−. Exercise: work out the subscripts on
the composition functors. We denote the component of αxyzw on a triple
of 1-morphisms h, g, f by αhgf : h ◦ (g ◦ f) → (h ◦ g) ◦ f . These natural
transformations are known as the associators.

Satisfying the following conditions:

(C) : Pre- and post-composition with idx is fully faithful.

(P) : The pentagon identity for associators; this asserts that the two ways
of going from the fourfold composition h(g(fe)) → ((hg)f)e using the
associators are equal. Exercise: explicitly draw out this diagram to see
why this is called the pentagon identity.

Example 7.6. if C is a strict 2-category, then it is a 2-category: associators and
units are just the identity maps.

Example 7.7. If C is a 2-category then C(x, x) is a monoidal category. As
before, there’s a looping-delooping equivalence between one-object 2-categories
and monoidal categories.

Example 7.8. Define a 2-category Bimod: the objects are rings A. The mor-
phisms from A to B are the category of A-B-bimodules. The composition
functor is tensoring: AMB ◦B NC = M ⊗B C. The identity bimodule is the
diagonal bimodule. Associators and units are given by the standard ones for
the tensor product.

Let C be a 2-category and f : x→ y a 1-morphism in C. There are canonical
isomorphisms idy ◦(idy ◦f)→ idy ◦f defined by first applying the associator and
then the unit υy. Since idy ◦− is fully faithful, it follows that there is a unique
isomorphism λf : idy ◦f → f for all f . We call λf the left unitor. Similarly,
there are also right unitors ρf . The assignment f 7→ λf is natural in f .

The triangle identities express that applying an associator turns a left
unitor into a right unitor; we do not reproduce them here. Compare with the
triangle identities in a monoidal category.
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7.3 Composition
In a 2-category, we have both horizontal and vertical composition of 2-morphisms.
Let f, g, h : x → y be 1-morphisms, and let γ : f → g and δ : g → h be two
2-morphisms in a hom-category C(x, y). Their vertical composition is their
composition δγ ∈ C(x, y). Diagramatically, this corresponds to sticking the
corresponding 2-cells together end-to-end.

Now suppose that f, g : x → y and f ′, g′ : y → z are 1-morphisms and
γ : f → g and γ′ : f ′ → g′ are 2-morphisms. Their horizontal composition
is γ′ ◦ γ : f ′ ◦ f → g′ ◦ g. Diagramatically, this glues two 2-cells along their
common vertices and regards the diagram as one large 2-cell.

7.4 Opposites
Let C be a 2-category. There is an obvious notion of opposite: Cop is the
2-category with Cop(x, y) := C(y, x). The units and associators are inherited
from C. Exercise: write these down explicitly.

However, one could instead apply the opposite functor to the hom-2-categories!
The conjugate Cc of C has Cc(x, y) := C(x, y)op. Again, the units and as-
sociators are inherited from C - write these down explicitly if the last exercise
wasn’t enough for you.

Observation: The opposite of C has horizontal composition reversed but ver-
tical composition the same. The conjugate of C has horizontal composition the
same but vertical composition reversed.

Example 7.9. If C is a 1-category viewed as a 2-category, then Cop is the usual
opposite category. The conjugate Cc is C itself.

Example 7.10. Let C be a monoidal category. Then B(C)op is B(Crev), where
Crev is the reverse of C: the underlying category is the same but the monoidal
product is reversed. In particular if C is symmetric monoidal then B(C) is
isomorphic to its opposite. Similarly, B(C)c is B(Cop), where Cop is endowed
with the natural monoidal structure.

Exercise: convince yourself that (Cop)c = (Cc)op.

7.5 Functors
If M,N are monoidal categories then there are three fundamental notions of
functors between them: strict monoidal, monoidal, and lax monoidal (there are
also oplax monoidal functors, but these can be intepreted in terms of opposite
categories). Loosely, strict monoidal functors preserve the monoidal structure
up to equality, monoidal functors up to natural isomorphism, and lax monoidal
functors simply provide a natural comparison map (for oplax monoidal functors
this comparison map runs in the opposite direction). Viewing 2-categories as
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many-object monoidal categories, it should come as no surprise that there are
three different notions of functor between them.

Definition 7.11. A strict 2-functor between two 2-categories C,D is:

• A map F on objects.

• For each pair x, y a functor Fxy : C(x, y)→ D(Fx, Fy).

Satisfying the identities:

• Fυ = υF for all units υ.

• Fα = αF for all associators α.

Remark 7.12. This is the many-object version of a strict monoidal functor.
Remark 7.13. The identity 2-functor is a strict 2-functor.
Example 7.14. If C and D are strict 2-categories, then a strict 2-functor between
them is just a Cat-enriched functor. In particular, if C and D are 1-categories,
then strict 2-functors are the same thing as usual functors.

As before, this notion is too rigid. We want a looser definition.

Definition 7.15. A lax 2-functor F between two 2-categories C,D is:

• A map F on objects.

• For each pair x, y a functor Fxy : C(x, y)→ D(Fx, Fy).

• For every x ∈ C, a 2-morphism ϵ : idFx → F (idx) which we call the
identity constraint.

• For every composable pair (g, f) of 1-morphisms in C, a 2-morphism

µgf : Fg ◦ Ff → F (g ◦ f)

which we call the composition constraint.

Satisfying the conditions:

1. µgf is natural in both g and f .

2. Compatibility between λFf and Fλf via the ϵ and µ.

3. Compatibility between ρFf and Fρf via the ϵ and µ.

4. Compatibility between Fα and αF via the µ.

Exercise: spell out this definition explicitly.

Definition 7.16.

1. A unitary lax 2-functor of 2-categories is a lax 2-functor with all the ϵ
invertible.
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2. A unitary lax 2-functor is a 2-functor if in addition all the µ are invertible.

3. A strict unitary lax 2-functor is a lax 2-functor with all ϵ the identity
morphism. Clearly a strict unitary lax 2-functor is a unitary lax 2-functor.

We abbreviate “unitary lax” to ulax and “strict unitary lax” to sulax.
Remark 7.17. Just like strict 2-functors are many-object versions of strict monoidal
functors, 2-functors generalise monoidal functors and lax 2-functors generalise
lax monoidal functors. Exercise: show this!
Remark 7.18. An oplax 2-functor is the same as a lax 2-functor, but the unit
and composition constraints go the other way. These generalise oplax monoidal
functors. Exercise: show that an oplax 2-functor C → D is the same thing as a
lax 2-functor C → Dc to the conjugate of D.

All of these notions of functor are closed under composition. In particular,
the collection 2Cat of 2-categories forms a 1-category when equipped with any
of these collections of functors. We have obvious inclusions

2Cat

Cat 2Catstr 2Catulax 2Catlax

2Catsulax

where no functor except the leftmost is fully faithful, and all functors except
the leftmost are the identity on objects.
Remark 7.19. Every 2-category is equivalent to a strict 2-category; this is a
many-object version of the strictification theorem for monoidal categories. How-
ever, one should think of this fact as a coincidence, rather than a desirable fea-
ture of the theory: whatever an n-category is, for n ≥ 3 not all n-categories are
equivalent to strict n-categories.

7.6 Coarse homotopy categories
If C is a strict 2-category, then by forgetting the 2-morphisms we can view
it as a 1-category. However, if C is a 2-category then this does not work,
since composition is no longer associative. We remedy this by introducing two
different notions of homotopy category for 2-categories.

Note that there is a natural inclusion functor i : Cat→ 2Cat which regards
a category as a strict 2-category with discrete hom-categories.

Definition 7.20. Let C be a 2-category. A 2-functor η : C → iD exhibits D
as the coarse homotopy category of C if it induces a bijection Cat(D,E) =
2Cat(C, iE) via postcomposition.
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In particular, if one can naturally choose such 2-functors η then the as-
signment of coarse homotopy categories defines a functor h from 2Cat to Cat
which is left adjoint to i. In particular D = hC is then unique up to unique
isomorphism.

Theorem 7.21. Coarse homotopy categories exist.

Proof. We begin with the construction of hC. The objects of hC are the same
as the objects of C. The homsets are given by hC(x, y) := π0N•C(x, y). Com-
position is inherited from C using that π0 and N• preserve finite products. As-
sociativity follows because the nerve functor sends components to components:
in C(x, y), if two 1-morphisms f, g are linked by a 2-morphism ϕ : f → g, then
they lie in the same connected component of N•C(x, y).

Now we need to define the comparison 2-functor η : C → hC. It’s the identity
on objects. On 1-morphisms, η sends an object f ∈ C(x, y) to its homotopy class
[f ] ∈ π0N•(x, y). Given a 2-morphism f → g, we send it to id[f ]; as before this
is well-defined since the nerve preserves connected components. The identity
and composition constraints are given by identities. One can easily check that
this defines a 2-functor.

Finally we need to check that η is universal. Let E be a 1-category and
suppose that we are given a 2-functor F : C → iE. We need to show that
there exists a unique F̄ : hC → E such that F̄ η = F . For existence, set F̄
to be the identity on objects. On morphisms, put F̄ [f ] := [Ff ]; again this is
well-defined by the same connected components argument. Clearly F̄ lifts F .
For uniqueness, suppose we have another functor G lifting F . Certainly G must
agree with F̄ on objects, and moreover we have G[f ] = [Ff ] = F̄ [f ], so that
G = F̄ .

Observe that the coarse homotopy category of a general 2-category kills too
much information: in particular it identifies any two 1-morphisms that are linked
by any zigzag of 2-morphisms. We’d like to first apply the core functor to our
hom-categories in order to discard non-invertible 2-morphisms.

7.7 (2,1)-categories and the pith
A (2,1)-category is a 2-category where all hom-categories are groupoids. Clearly
a 1-category is a (2,1)-category.

Definition 7.22. For a 1-category C, the core of C is the maximal subgroupoid
C≃; i.e. one takes C and throws away all of the non-invertible morphisms. The
core is functorial, and is the right adjoint to the inclusion of groupoids into
categories (the left adjoint is given by freely adding inverses).

Definition 7.23. Let C be a 2-category. The pith of C is the (2,1)-category
PithC which has the same objects as C and hom-groupoids given by

PithC(x, y) := C(x, y)≃.
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Composition and units are inherited from C via the functoriality of the core; one
can check that PithC remains a 2-category. As before, the pith is functorial, and
moreover is right adjoint to the inclusion of (2, 1)-categories into 2-categories.

7.8 Homotopy categories
Let C be a 2-category. The homotopy category (or fine homotopy cate-
gory when we need to distinguish it from the coarse one) of C is the 1-category
hC := hPithC. Note that h is functorial, but not an adjoint - it is the compo-
sition of a right and a left adjoint. It is possible to give a more down-to-earth
definition of hC: one sets

hC(x, y) := {isoclasses of C(x, y)}.

This alternate characterisation follows since, for G a groupoid, π0N•G is pre-
cisely the set of isoclasses of G: two objects of G live in the same connected
component of the nerve if and only if they are isomorphic.

7.9 Isomorphisms
Now we have the (correct) notion of the homotopy category of a 2-category, we
can say what it means for a 1-morphism of a 2-category to be an isomorphism:

Definition 7.24. Let C be a 2-category and f : x→ y a 1-morphism. Say that
f is an isomorphism precisely when [f ] is an isomorphism in the homotopy
category hC.

Exercise: f : x → y is an isomorphism if and only if there exists g : y → x
and invertible 2-morphisms fg → idy and gf → idx.

Example 7.25. Cat is a 2-category. A 1-morphism is an isomorphism in the
above sense if and only if it is an equivalence of categories.

7.10 The Duskin nerve
We now expect that a (2, 1)-category should give an ∞-category via some sort
of nerve construction. Then one can give a nerve for any 2-category by first
taking the pith.

To do this, we will define for any 2-category C a simplicial set ND
• C, the

Duskin nerve of C (first introduced by Street for strict 2-categories and Duskin
for all 2-categories).

We will later show that when C is a (2, 1)-category, its Duskin nerve is an
∞-category. We will also show that the formation of Duskin nerves gives a fully
faithful functor 2Catsulax → sSet, just like in the 1-categorical case.
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Recall the standard cosimplicial category ∆̃• with ∆̃n := [n]. Composing
∆̃ with the embedding Cat ↪→ 2Catsulax, we obtain a cosimplicial object in
2-categories, which we will still refer to by ∆̃•.

Definition 7.26. The Duskin nerve functor ND
• : 2Catsulax → sSet is the

nerve with respect to ∆̃. Concretely, the n-simplices of ND
• C are in bijection

with the sulax 2-functors [n]→ C.

Exercise: if C is a 1-category, then its Duskin nerve is canonically isomorphic
to N•C.

Remark 7.27. The Duskin nerve sends opposites to opposites, but does not
have any simple relationship to conjugates (since taking the conjugate turns lax
functors into oplax functors).

Remark 7.28. The Duskin nerve does not admit a left adjoint: the problem is
that 2Catsulax does not have enough colimits to allow realisation with respect
to ∆̃•.

7.11 Low-dimensional simplices of the Duskin nerve
One can write down concretely what an n-simplex of the Duskin nerve of a
2-category is. We refrain from doing this in generality, but give some low-
dimensional examples.

Let C be a 2-category.

Example 7.29 (0-simplices). There is a natural bijection ND
0 C ∼= ObC.

Example 7.30 (1-simplices). There is a natural bijection ND
1 C ∼= Mor1C. More-

over, the face and degeneracy maps linking 0- and 1-simplices are exactly the
expected ones from the 1-categorical nerve.

Example 7.31 (2-simplices). A 2-simplex σ ∈ ND
2 C can be identified with the

following data:

1. Three objects X,Y, Z.

2. Three 1-morphisms f : X → Y , g : Y → Z and h : X → Z.

3. A 2-morphism ϕ : gf → h.

7.12 Thin simplices
In this part we aim to give (an idea of) the proof of the following theorem:

Theorem 7.32 (Duskin). Let C be a 2-category. Then the Duskin nerve ND
• C

is an ∞-category if and only if C is a (2, 1)-category.

We will prove it using the auxiliary concept of a thin simplex.
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Definition 7.33. Let X be a simplicial set. Say that a 2-simplex τ of X is
thin if the following condition holds: for every n ≥ 3 and for every 0 < i < n,
let σ : Λn

i → X be an inner i-horn containing τ as the 2-simplex {i− 1, i, i+1}.
Then σ admits a lift to ∆n.

It is clear that every 2-simplex in an∞-category is thin. Conversely, if every
2-simplex of a simplicial set X is thin, then X is an ∞-category if and only if
it admits fillers for inner 2-horns.

Proposition 7.34. Let C be a 2-category and σ a 2-simplex of the Duskin
nerve, corresponding to a 2-morphism ϕ : gf → h. Then σ is thin if and only if
ϕ is an isomorphism.

We will not give the proof of this as it is rather involved. However, it can
be reduced to checking only that 3- and 4-simplices lift, using the following
2-categorical version of 3.6:

Lemma 7.35. Let C be a 2-category. Then the restriction map

sSet(∆n, ND
• C)→ sSet(∂∆n, ND

• C)

is a bijection for n ≥ 4 and an injection for n = 3.

Proof of 7.32. If C is any 2-category then ND
• C admits fillers for inner 2-horns

using the composition in C. So ND
• C is an ∞-category if and only if every

2-simplex is thin. By 7.34, this is equivalent to C being a (2, 1)-category.

7.13 Fully faithfulness
Theorem 7.36 (Duskin). The Duskin nerve is a fully faithful functor

ND
• : 2Catsulax ↪→ sSet.

Again, the proof is rather involved, so we omit it. Clearly one can recover
objects and 1-morphisms from the Duskin nerve. Moreover one can recover 2-
morphisms from degenerate 2-simplices. The hard part is checking that one can
recover the associators and units.

Corollary 7.37. The Duskin nerve is a fully faithful functor

ND
• : (2,1)Catsulax ↪→∞Cat.

Corollary 7.38. Let C be a 2-category. Then the coarse homotopy category
hC is hND

• C. In particular, if C is a (2, 1)-category then hC ≃ hND
• C.

7.14 Strict 2-categories
What sort of structure does the Duskin nerve of a strict 2-category have? We
show that it has an alternate description solely in terms of strict 2-functors.
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Definition 7.39. Let P be a poset. We define a strict 2-category, the path
2-category Path2[P ], as follows.

• The objects of Path2[P ] are the elements of P .

• The hom-category between two elements x, y is the poset of chains from
x to y (i.e. linearly ordered subsets with minimal element x and maximal
element y), ordered by reverse inclusion. Note that this hom-category has
a maximal element {x ≤ y}.

• The identity 1-morphism idx is the poset {x}.

• Associators are given by concatenation: if S is a chain from x to y and T
is a chain from y to z then S ∪ T is a chain from x to z.

Remark 7.40. If P is a poset, regarded as a quiver, then the underlying 1-
category of Path2[P ] is the path category Path[P ].

Since the assignment n 7→ [n] defines a cosimplicial category, applying the
path 2-functor yields a cosimplicial strict 2-category Path2[•]. We can then take
the nerve with respect to this cosimplicial strict 2-category, which turns out to
be precisely the Duskin nerve:

Theorem 7.41. The nerve with respect to the cosimplicial strict 2-category
Path2[•] is canonically isomorphic to the functor

2Catstr ↪→ 2Catsulax
ND

•−−→ sSet.

Proof sketch. For any poset P we will first construct a natural sulax 2-functor
TP : P → Path2[P ]. On objects it is the identity. On 1-morphisms, if x ≤ y
then the unique map x→ y of P is sent to the poset {x < y}. If x < y < z then
the composition constraint is the inclusion {x < z} ↪→ {x < y < z}. One can
check that this defines a sulax functor TP . Composition with TP then induces,
for every strict 2-category C, a natural map

2Catstr(Path2[P ], C)→ 2Catsulax(P,C)

and one checks that this is a bijection. In particular, the natural map of cosim-
plicial 2-categories T• : [•]→ Path2[•] yields a map of nerves

N
Path2[•]
• (C)→ ND

• (C)

which is an isomorphism.

Corollary 7.42. If C is a strict 2-category, then there is a natural bijection

ND
n (C) ∼= 2Catstr(Path2[n], C).

Remark 7.43. The category of strict 2-categories has all colimits, and hence the
restricted Duskin nerve functor ND

• : 2Catstr → sSet admits a left adjoint,
which geometrically realises a simplicial set as a strict 2-category: the standard
n-simplex is sent to the path category Path2[n] and then extended via colimits.
More generally, a poset P , viewed as a 1-dimensional simplicial set, is realised
as the strict 2-category Path2[P ].
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8 Simplicially enriched categories
In this section we consider categories enriched in simplicial sets, which we will
think of as alternate models for ∞-categories. More precisely, only certain
simplicially enriched categories will model ∞-categories: just like 2-categories,
these will be the simplicially enriched categories with only invertible higher
morphisms.

We’ll describe a nerve functor, the homotopy coherent nerve Nhc, which
takes a simplicially enriched category to a simplicial set; just like the Duskin
nerve, the image of the homotopy coherent nerve includes simplicial sets that
are not ∞-categories.

8.1 First definitions
Definition 8.1. A simplicial category C is a category enriched in simplicial
sets. More concretely, a simplicial category consists of:

• A class of objects.

• A simplicial set C(x, y) for every pair of objects x, y.

• Composition maps which are morphisms in sSet.

• Distinguished identity vertices idx ∈ C(x, x)0.

• Coherence axioms for composition and identities.

Definition 8.2. A simplicial functor F : C → D between simplicial cat-
egories consists of a map F on objects, and for every pair of objects (x, y) a
morphism Fxy : C(x, y) → D(Fx, Fy) of simplicial sets. We also demand that
the coherence axioms Fxx(idx) = idFx and FyzFxy = Fxz are satisfied for all
x, y, z.

We denote the category of (small) simplicial categories by sCat.
Example 8.3. sSet is itself a simplicial category, with hom-spaces given by the
usual closed monoidal structure sSet(X,Y )n = sSet(X ×∆n, Y ).
Example 8.4. Similarly, the category of topological spaces is a simplicial cate-
gory, with Top(X,Y )n := Top(X ×∆n, Y ).

Example 8.5. If C is a category, then the constant simplicial category on
C has the same objects as C, and hom-spaces C(x, y)n = C(x, y) for all n. This
gives a fully faithful embedding from Cat to sCat.

8.2 Simplicial objects in categories
Warning: our choice of terminology “simplicial categories” is potentially con-
fusing! There is a difference between sCat and the category Fun(∆op,Cat) of
simplicial objects in the category of categories. However, one can compare the
two:
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Lemma 8.6. There is a fully faithful embedding sCat ↪→ Fun(∆op,Cat) whose
image consists of those functors X which are constant on objects, i.e. Obj(X[n])
is a constant simplicial set.

Proof sketch. Let C be a simplicial category. Then for each n ≥ 0 we associate
a category Cn with the same objects, and Cn(x, y) := C(x, y)n. Composition
is inherited from C; recall that products of simplicial sets are defined levelwise.
Identities are idx, viewed as a degenerate n-simplex. This construction defines
a functor from sCat to Fun(∆op,Cat) which sends C to the functor [n] 7→ Cn.
Fullness and faithfullness of this functor come from unwinding the definition of
simplicial functors. It is clear that the image consists of those functors which
are constant on objects.

Proposition 8.7. sCat is complete and cocomplete.

Proof sketch. Since Cat is bicomplete, so is Fun(∆op,Cat). In particular, any
(small) diagram of simplicial categories has a (co)limit in Fun(∆op,Cat). But
(co)limits in this category are computed levelwise, and in particular (co)limits
of diagrams which are constant on objects remain constant on objects (since
Set is closed under colimits in sSet). In other words, the (co)limit of a diagram
in sCat remains in sCat.

8.3 Homotopies and homotopy categories
Definition 8.8. Let C be a simplicial category and f, g : x → y two vertices
of C(x, y). A homotopy f → g is an edge h of C(x, y) such that d1h = f and
d0h = g.

Example 8.9. Homotopy in Top is precisely the usual notion of homotopy.
Example 8.10. Homotopy in sSet is the usual notion of simplicial homotopy.

Just like simplicial homotopy is badly behaved for arbitrary simplicial sets,
the notion of homotopy between two morphisms of a simplicial category is also
ill-behaved in general; we’d like to restrict to a nice subclass of simplicial cate-
gories. Unsurprisingly, these are the categories enriched in Kan complexes:

Definition 8.11. A simplicial category is locally Kan if all mapping spaces
are Kan complexes.

Example 8.12. Top is locally Kan. If C is a category, then the constant simpli-
cial category on C is locally Kan.

Proposition 8.13. If C is locally Kan, then for all x, y ∈ C homotopy is an
equivalence relation on C(x, y)0.

Proof. If K is a Kan complex (more generally a weak Kan complex), homotopy
is an equivalence relation on K0.

Definition 8.14. Let C be a simplicial category. The homotopy category
of C is the category π0C obtained by taking connected components of the mor-
phisms spaces of C.
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Proposition 8.15. If C is locally Kan, then π0C(x, y) ≃ C(x, y)0/(homotopy).

Proof. Clear from the fact that if X is a Kan complex then π0X is the quotient
of X0 by homotopies.

Remark 8.16. There are several particularly nice functors E : sSet→ Kan that
one can view as ‘Kanification’; for example Kan’s Ex∞ functor is the canon-
ical choice but one could also use Sing•| − |. Both of these functors preserve
finite products and hence applying E levelwise gives a functor E that sends an
arbitrary simplicial category to a locally Kan simplicial category.

Remark 8.17. The functor E above is a fibrant replacement functor for the usual
Kan-Quillen model structure on sSet. The category sCat admits an enriched
model structure, the Bergner model structure, where the weak equivalences
are the Dwyer–Kan-equivalences and the fibrations are the enriched fibrations.
Then the functor E above is a fibrant replacement functor in the Bergner model
structure.

8.4 The homotopy coherent nerve
We’re going to define a nerve functor from simplicial categories to simplicial
sets. In particular, we want to cook up a cosimplicial object in simplicial cate-
gories. The following definition is the simplicial category version of 7.39, and is
originally due to Cordier.

Definition 8.18. Let P be a poset. For x, y ∈ P consider the poset Px,y whose
elements are the chains from x to y, ordered by reverse inclusion. Using this we
can define a simplicial category Path(P ), whose objects are the elements of P ,
and whose hom-spaces are Path(P )(x, y) := N•Px,y. Identities are given by the
poset {x} and composition is given by concatenation (i.e. union).

Remark 8.19. The choice of reverse ordering is a convention; one must make a
choice since categories have a Z/2-symmetry (given by the opposite). Cordier’s
original definition used the opposite convention; we choose this convention for
compatibility with the Duskin nerve.

Example 8.20. The path category of [n] has hom-spaces given by Path[n](i, j) =
(∆1)×(j−i−1) if i < j, the terminal simplicial set if i = j, and empty otherwise.

Just like with path 2-categories, Path is a functor, and hence applying it
to the standard cosimplicial poset we obtain a cosimplicial simplicial category
[n] 7→ Path[n]. The nerve with respect to this is the homotopy coherent
nerve Nhc.

Remark 8.21. Let C be a simplicial category. The vertices of NhcC are the
objects of C. The edges of NhcC are the morphisms of C, and the face and
degeneracy maps are as expected.

Proposition 8.22. If C is a category, then there is a natural isomorphism
N•C ≃ NhcC.

38



Theorem 8.23 (Cordier–Porter). Let C be a locally Kan simplicial category.
Then NhcC is a quasi-category.

The above is rather difficult to prove, so we make no attempt at doing so.
Remark 8.24. Be warned that the homotopy coherent nerve is not fully faithful;
loosely this is because higher simplices of the nerve mix the categorical infor-
mation with the simplicial information. Heuristically, there is no way to tell
whether a given n-simplex of NhcC is obtained by composing simplices of lower
dimension, or whether it arises as an n-simplex in some mapping space of C.

Comparing the two definitions of homotopy category yields:

Proposition 8.25. If C is a locally Kan simplicial category, then there is a
natural equivalence hNhc(C) ≃ π0C.

Remark 8.26. The levelwise nerve functor yields a functor N : Fun(∆op,Cat)→
ssSet, which sends a simplicial object X in categories to the bisimplicial set
NX with Nn,mX := Nm(X(n)). Note that NX is in fact a simplicial object
in quasi-categories. If C is a simplicial category, taking the diagonal of NC
yields a simplicial set NC with NnC = NnCn. Then NC is weakly homotopy
equivalent to Nhc(C). The same remains true if one replaces the diagonal by
the totalisation.

Since sCat is cocomplete, the general nerve-realisation machinery yields a
left adjoint to Nhc; we call this the rigidification functor and denote it by C.
We think of C as ‘rigidifying’ a quasi-category by replacing it with a category
in which composition is strictly associative. If P is a poset, then C(N•P ) is the
simplicial category Path(P ); in general the rigidification is defined by taking
colimits of such simplicial categories.
Remark 8.27. The adjunction C ⊣ Nhc is a Quillen equivalence when sSet
is given the Joyal model structure, so that quasi-categories and locally Kan
simplicial categories have the same homotopy theory. In particular if C is locally
Kan then CNhcC → C is a DK-equivalence, and if D is an ∞-category then
D → NhcCD is a categorical equivalence.

9 DG categories
As another source of examples of ∞-categories, we will consider dg categories,
i.e. categories enriched over chain complexes. We will construct a dg nerve for
dg categories, which will allow us to view any dg category as an ∞-category.
We will then describe the Dold–Kan correspondence, which gives a way
of turning a dg category C into a simplicially enriched category C̃. We will
compare the dg nerve of C with the homotopy coherent nerve of C̃.

9.1 Basic definitions
Fix a commutative ring k. A dg category is a Ch(k)-enriched category; i.e.
for each pair of objects x, y we have a chain complex C(x, y), together with unit
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maps k → C(x, x) and composition maps C(y, z)⊗C(x, y)→ C(x, z) satisfying
the usual unitality and associativity axioms.

A dg functor is a Ch(k)-enriched functor; i.e. a map F on objects and a col-
lection of maps Fxy : C(x, y)→ D(Fx, Fy) satisfying the usual compatibilities.
Remark 9.1. The forgetful functor Ch(k) → Set is lax monoidal, and hence
every dg category has an underlying category.

Examples of dg categories include:

• Ch(k) itself, with the usual mapping complexes.

• More generally Ch(A) for A any k-linear additive category.

• dg categories with one object are the same thing as dg algebras, since both
can be described as monoids in Ch(k).

• If A is a dg k-algebra, then the category Mod − A of left dg A-modules
is a dg category.

• If C is a dg k-coalgebra, then the category Comod − C of left dg C-
comodules is a dg category.

• Various kinds of derived categories: if A is a (dg) k-algebra then D(A),
Db(A), D±(A), perA are all dg categories.

• Various kinds of categories of sheaves on a ringed space: if X is a space
and OX a sheaf of k-algebras, then the category Mod − OX (as well as
various associated derived categories) are dg categories.

9.2 The DG nerve
For a dg category C we will construct a simplicial set Ndg(C), its dg nerve.
Before we begin we give some terminology. Let I be a nonempty subset of [n].
We write bI for the bottom (i.e. minimal with respect to <) element of I, and
tI for the top (i.e. maximal with respect to <) element of I. If i ∈ I then we let
i− ⊆ I denote the set of all j ∈ I with j ≤ i, and similarly i+ := {j ∈ I : j ≥ i}.
An n-simplex of Ndg(C) is then defined to be the following collection of data:

1. Objects X0, . . . , Xn of C.

2. For each I ⊆ [n] with |I| ≥ 2, an element fI ∈ C(XbI , XtI)|I|−2.

satisfying the condition that, for each such I, we have

dfI =
∑
i∈I

(−1)i
(
fi+ ◦ fi− − fI−{i}

)
.

Loosely, this condition says that for all paths p in [n], the map assigned to p
gives a homotopy between all possible ways of breaking up p into two subpaths,
together with some higher coherencies.
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One can equip the collection Ndg
n (C) with face and degeneracy maps making

it into a simplicial set. We obtain a functor Ndg : dgCat→ sSet which we call
the dg nerve.

Theorem 9.2. The dg nerve of a dg category is an ∞-category.

The proof is a rather technical combinatorial exercise, so we omit it.
Remark 9.3. There is a natural monomorphism N(C)→ Ndg

n (C): if f1, . . . , fn
is a string of n composable 0-cycles, then composing them in all possible ways
yields a simplex of the dg nerve.
Remark 9.4. DG categories are generalised by A∞-categories, which drop the
strict associativity of composition in exchange for a system of coherent homo-
topies witnessing homotopy associativity. Faonte constructed a natural A∞-
nerve with respect to a certain cosimplicial A∞-category, whose restriction to
dg categories agrees with our dg nerve. Rivera and Zeinalian also constructed a
dg nerve with respect to a certain cosimplicial dg category; however the cosim-
plicial dg category in question is rather complicated (it arises from a cocubical
dg category).
Remark 9.5. Given a simplicial set X, there is a dg category ΩX defined as
follows: the objects of ΩX are the vertices of X, and the mapping spaces are
defined via the dg algebra ΩC∗X, where Ω denotes the cobar construction. Up
to equivalence, the dg nerve is the right adjoint to Ω.

9.3 Low-dimensional simplices of the DG nerve
Let C be a dg category.

• The set Ndg
0 (C) is in bijection with the objects of C.

• The set Ndg
1 (C) is in bijection with the 0-cycles of C; i.e. the triples

(x, y, f) consisting of two objects x, y and a morphism f ∈ C(x, y)0 with
df = 0. The face and degeneracy maps are the expected ones.

• There is a bijection between Ndg
2 and the set of triangles of degree 0 cycles

together with a degree 1 morphism witnessing homotopy commutativity of
the triangle. More accurately, giving a degree 2 simplex of the dg nerve is
equivalent to giving a septuple (X,Y, Z, f, g, h, θ) such that f ∈ C(X,Y )0,
g ∈ C(Y,Z)0, h ∈ C(X,Z)0 such that df = 0, dg = 0, dh = 0 and with
θ ∈ C(X,Z)1 satisfying dθ = gf − h.

9.4 Homotopy categories
A dg category C has a homotopy category H0C defined by having the same
objects as C, and homsets defined by (H0C)(x, y) = H0(C(x, y)). Composition
is inherited from C. Note that H0(C) is actually a k-linear category, but we
forget the extra k-linear structure on the hom-spaces. The following proposition
can be proved by unwinding the definition of the left-hand side:

Proposition 9.6. There is a natural equivalence hNdg(C) ≃ H0(C).
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9.5 Dold–Kan
Let A be any abelian category. Recall that Ch(A)≥0 denotes the category of
connective chain complexes in A, i.e. those chain complexes V∗ with Vi

∼= 0
for i < 0.

Proposition 9.7 (Dold–Kan correspondence). There exists an equivalence of
categories sA ≃ Ch(A)≥0.

We will restrict to the case where A is the category of modules over some
commutative ring k, as this simplifies matters. One direction of the correspon-
dence is constructed using the Moore complex of a simplicial k-module. Given
a simplicial k-module M , let C∗M be the chain complex with CnM = Mn, and
with differential given by the alternating sum of the face maps. The simplicial
identities imply that this is a chain complex.

Let D∗M be the subcomplex of C∗M generated by the degenerate simplices,
and put Γ∗M := C∗M/D∗M . Then Γ∗M is known as the normalised Moore
complex.

Remark 9.8. Since D∗M is acyclic, the natural surjection C∗M ↠ Γ∗M is a
quasi-isomorphism.

Remark 9.9. If M is a semisimplicial set (i.e. a simplicial set without degeneracy
maps), then one can still form its normalised Moore complex. Indeed there is a
naturally defined subcomplex Γ′

∗M ↪→ C∗M , which in degree n is defined to be
the intersection of ker di for i = 1, 2, . . . , n. The natural composition

Γ′
∗M ↪→ C∗M ↠ Γ∗M

is an isomorphism. This implies that the short exact sequence defining Γ∗M
splits.

If X is a simplicial set, one can form the free simplicial k-module kX by
taking free k-modules levelwise. Hence one can consider the chain complex
Γ∗(kX), known as the complex of reduced chains on X with coefficients
in k. The homology of Γ∗(kX) is known as the reduced homology of X with
coefficients in k.

In particular, the standard cosimplicial simplicial set ∆• yields a cosimplicial
chain complex Γ∗(k∆

•). This allows us to define a functor K : Ch(A)≥0 → sA
by setting K(L) := Homk(Γ∗(k∆

•), L).

Proposition 9.10 (Dold, Puppe, Kan). K and Γ∗ are inverses.

Remark 9.11. K and Γ∗ are the enriched nerve and realisation with respect to
Γ∗(k∆

•). Automatically it follows that K is right adjoint to Γ∗.
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9.6 The Alexander–Whitney map
Our aim in this section will be to show that K is a lax monoidal functor.
This is equivalent to proving that its inverse Γ∗ is oplax monoidal. In other
words, we want to exhibit natural maps Γ∗(A × B) → Γ∗(A) ⊗k Γ∗(B). How
do we do this? The idea is that for each 0 ≤ p ≤ n we can break [n] into two
intervals [p] + [n − p]. This determines two maps αp : [p] → [n] which sends
i 7→ i and βp : [n − p] → [n] which sends j 7→ j + p. The Alexander–Whitney
map is then defined on n-dimensional generators by sending a × b to the sum∑p=n

p=0 α
∗
p(a) ⊗ β∗

p(b). This gives a well-defined chain map which one can check
restricts to the normalised Moore complex Γ∗(A×B).

Proposition 9.12. The Alexander–Whitney map makes Γ∗ into an oplax monoidal
functor.

Corollary 9.13. The Dold–Kan functor K is a lax monoidal functor.

In fact, one can write down the lax monoidal structure on K: if X and Y
are two complexes then the natural map K(X) × K(Y ) → K(X ⊗ Y ) sends
an n-simplex of the product (σ : Γ∗(k∆

n) → X, τ : Γ∗(k∆
n) → Y ) to the

composition

Γ∗(k∆
n)

diag−−−→ Γ∗(k∆
n × k∆n)

AW−−→ Γ∗(k∆
n)⊗ Γ∗(k∆

n)
σ⊗τ−−−→ X ⊗ Y.

Remark 9.14. Γ∗ is not strong monoidal; in particular the Alexander–Whitney
maps are not isomorphisms. They are however quasi-isomorphisms - this is the
Künneth theorem.

Remark 9.15. The Alexander–Whitney map is what gives the singular chain
complex of a topological space its coalgebra structure.

9.7 From dg to simplicial categories
Definition 9.16. Let K̃ : Ch(k)→ sSet be the functor defined by the following
composition:

Ch(k)
τ≥0−−→ Ch(k)≥0

K−→ sModk
U−→ sSet

where τ≥0 is the truncation functor and U is the forgetful functor.

Lemma 9.17. The functor K̃ is lax monoidal.

Proof. It suffices to show that all of τ≥0, K, and U are lax monoidal. The
Alexander–Whitney map shows that K is lax monoidal, and we leave the proof
for the truncation and forgetful functors as an exercise.

Hence, if C is a dg category, applying K̃ to the hom-complexes will yield a
simplicial category which we denote C̃. Our final aim is to give an idea of the
following theorem:
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Theorem 9.18. If C is a dg category then there is a natural equivalence of
∞-categories

EC : Nhc(C̃)→ Ndg(C)

and in particular the two nerves are weakly homotopy equivalent.

Proof sketch. Recall that an n-simplex of the homotopy coherent nerve is a
simplicial functor from the n-path category: we have

Nhc
n (C̃) := sCat(Path[n], C̃).

Fix a subset I = {a < i1 < i2 < · · · < im < b} ⊆ [n] of size m+ 2, with m ≥ 0.
For each permutation σ ∈ Sm we obtain an m-simplex τI,σ ∈ Path[n](a, b)m as
the chain

{a < b} ⊆ {a < iσ1 < b} ⊆ · · · ⊆ {a < iσ1 < · · · < iσm < b} = I

Given a simplicial functor F : Path[n]→ C̃, for every I and σ as above we hence
obtain an element

FI,σ := F (τI,σ) ∈ K̃(C(Fa, Fb))m

which corresponds across Dold–Kan to an element fI,σ ∈ C(Fa, Fb)m. We can
then put

fI :=
∑

σ∈Sm

sgn(σ)fI,σ ∈ C(Fa, Fb)m

and the collection of all such fI , as I varies, form an n-simplex of the dg nerve
of C, with associated collection of objects Xi = Fi. Moreover, this assignment
extends to a map of simplicial sets EC : Nhc(C̃)→ Ndg(C) which is natural in C.
It’s easy to see that EC is bijective on objects, so to prove that it is an equivalence
one needs only to compare the mapping spaces in both categories.

10 Vistas
We skim over some of the more advanced things one can do with ∞-categories.

10.1 Mapping spaces
If x, y are two objects of an ∞-category C, then one can construct a mapping
space MapC(x, y) ∈ sSet. This is constructed as the fibre of the natural map

π : Fun(∆1, C)→ C × C

above the point (x, y). In fact, π is a Kan fibration, so that MapC(x, y) is a
Kan complex - one can regard it as a topological space. Proving this takes some
significant work and a detailed analysis of Kan fibrations.
Remark 10.1. If C is a locally Kan simplicial category, then MapNdg(C)(x, y) is
naturally homotopy equivalent to C(x, y).
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If hKan denotes the homotopy category of Kan complexes, then there are
well-defined composition maps

MapC(y, z)×MapC(x, y)→ MapC(x, z)

in hKan that are associative and unital in hKan. This makes precise the
intuition that ∞-categories should be ‘enriched in topological spaces’, although
we caution that this is not a literal enrichment.

Mapping complexes are functorial up to homotopy: if F : C → D is a functor
then there are well-defined maps Fxy : MapC(x, y)→ MapD(Fx, Fy) in hKan
that interact appropriately with composition. Say that F is fully faithful if
each Fxy is a homotopy equivalence (i.e. an isomorphism in hKan). Say that
F is essentially surjective if the 1-functor hF is essentially surjective.

Theorem 10.2. Let F : C → D be a functor of ∞-categories. Then the
following are equivalent:

• F is an equivalence, i.e. there exists a G : D → C such that FG ≃ id and
GF ≃ id as objects of the appropriate functor categories.

• F is fully faithful and essentially surjective.

10.2 Localisation
Let C be a 1-category equipped with a class of weak equivalences W . We assume
that W contains all isomorphisms and satisfies the two-out-of-three property (for
some applications stronger properties are required, e.g. two-out-of-six). Then
one can localise at W to obtain a simplicial category LWC. We will describe
the hammock localisation, which is one such construction originally due to
Dwyer and Kan.

A W -zigzag from x to y is a diagram of the form

x− a1 − a2 − a3 − · · · − am − y

where the adjacent morphisms go in opposite directions and all left pointing
morphisms are in W . A hammock from x to y is a morphism between identi-
cally oriented W -zigzags from x to y, where all vertical components are in W .
An n-hammock is then n hammocks pasted together along compatible zigzags,
with all hammock morphisms running in the same direction. The n-simplices
of LWC(x, y) are then given by the n-hammocks, and the face and degeneracy
maps are composition and insertion of identities in the hammock direction.

Theorem 10.3. There is a natural equivalence h(LWC) ≃ C[W−1].

We hence view a category with weak equivalences as a presentation of an
∞-category.
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Remark 10.4. In particular, a model category is a certain kind of category with
weak equivalences. However, there are easier ways of passing from a model
category to its associated ∞-category. If C is a simplicial model category, then
the category Ccf of bifibrant objects in C is a locally Kan simplicial category, and
its homotopy coherent nerve is equivalent to LWC. More generally, a theorem
of Dugger says that every combinatorial model category is Quillen equivalent
to a simplicial model category (in fact a localisation of a category of simplicial
presheaves). In fact, cominatorial model categories correspond precisely to the
presentable (cocomplete and accessible)∞-categories - a combinatorial model
category presents a presentable ∞-category, and every presentable ∞-category
has a presentation by a combinatorial model category.

10.3 Stabilisation and spectra
Informally, a spectrum is a sequence of pointed topological spaces Xn together
with structure maps ΣXn → Xn+1. These are supposed to model the stable
homotopy theory of topological spaces, i.e. the homotopical properties that are
stable under repeated applications of the suspension functor.

Here is one easy construction of spectra in the ∞-categorical setting. Let C
be an∞-category with finite limits and a zero object. Then one defines the loop
space of an object X as the∞-categorical pullback of the diagram 0→ X ← 0.

Example 10.5. If C denotes the ∞-category of pointed topological spaces, then
ΩX is weakly homotopy equivalent to the based loop space of X.

Say that C is stable if Ω is an autoequivalence. In particular, C then
necessarily has finite colimits and the inverse of Ω is given by the suspension
functor Σ, given on an object X by the pushout of 0← X → 0.

Loosely, a stable ∞-category is supposed to behave like an ∞-categorical
version of a triangulated or abelian category:

Example 10.6. If A is a ring, then the derived category D(A), viewed as an
∞-category, is stable: suspension is given by [1] and loops by [−1].

An ∞-category C with a zero object and finite limits has a stabilisation
StabC, which can be defined as the inverse limit of the tower

· · · Ω−→ C
Ω−→ C

Ω−→ C

The stabilisation of sSet∗ is then known as the ∞-category of spectra, denoted
by Sp := Stab(sSet∗). This is then a monoidal ∞-category, with monoidal
unit given by S, the sphere spectrum (whose homotopy groups are the stable
homotopy groups of spheres). Moreover Sp is the universal stable ∞-category:
any stable ∞-category is canonically enriched up to homotopy in Sp, just like
any ∞-category is canonically enriched up to homotopy in sSet.

46



Since any chain complex V can be recovered from its truncations τ≥−nV as
n→∞, it follows that for a ring A we have an equivalence of ∞-categories

Ch(A) ≃ Stab (Ch(A)≥0)

and the Dold–Kan correspondence then yields an equivalence

Ch(A) ≃ Stab (sMod−A) .

Applying the forgetful functor from simplicial A-modules to simplicial sets then
yields a functor Ch(A)→ Sp; the objects in the image of this functor are known
as Eilenberg–Mac Lane spectra. Moreover, this ‘spectral Dold–Kan corre-
spondence’ is appropriately monoidal, and hence allows one to obtain spectrally
enriched categories from dg categories.

10.4 Segal models for (∞, n)-categories
We’ve already seen two ‘models’ for ∞-categories - namely, quasicategories
(weak Kan complexes) and locally Kan simplicial categories. These are ‘equiv-
alent’, in the sense that both are the bifibrant objects of two Quillen equiva-
lent model structures (the Joyal model structure on sSet and the Bergner
model structure on sCat, respectively).

One other useful model to use is that of complete Segal spaces. In par-
ticular, complete Segal spaces are useful since they generalise readily to give
models for (∞, n)-categories. A Segal space is a bisimplicial set X (viewed as
a simplicial object in simplicial sets) satisfying the conditions

• Each Xn is a Kan complex.

• The Segal maps Xn → X1 × · · · ×Xn are all homotopy equivalences.

One should think of X0 as the space of objects, X1 as the space of morphisms,
X2 as the space of compositions, et cetera. A Segal space has a homotopy
category hX defined analogously. A morphism in X1 is said to be a homo-
topy equivalence if is becomes an isomorphism in hX. A Segal space is then
said to be complete if s0 : X0 → Xhoeq is a homotopy equivalence: in other
words, the degenerate 1-morphisms should (up to homotopy!) be the homo-
topy equivalences. There’s a completion functor that produces a complete Segal
space from a general one.

Complete Segal spaces are then models for∞-categories, in the model-categorical
sense above.

One can similarly define an n-fold Segal space inductively as a certain kind
of simplicial object in (n − 1)-fold Segal spaces, and completeness in a similar
manner. These are models for (∞, n)-categories, and often appear in particular
in treatments of the Cobordism Hypothesis.
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Remark 10.7. Rezk defined the notion of Θn-spaces, which also model (∞, n)-
categories. Very loosely a Θn-space is a certain sort of presheaf of simplicial
sets on a certain small category Θn of combinatorial shapes, just like an n-fold
complete Segal space is a certain sort of presheaf of simplicial sets on (∆op)n.

A Nerve and realisation
We’ll meet nerves in generality several times. My reference here was the nLab
page of the same name.

A.1 Nerve
Here’s a simple observation:

Proposition A.1. Let X : S → C be a functor. There is an associated functor
NX : C → Fun(Sop,Set) which sends c to the functor

s 7→ HomC(X(s), c)

We call NX the nerve associated to the functor X.

Example A.2. Take S to be the simplex category ∆. Then X is a cosimplicial
object in C, and the nerve functor has codomain sSet.

The slogan is: ‘cosimplicial objects in C give nerve functors C → sSet’.
Let’s see some examples of this.

Example A.3. The identity functor on ∆ can be viewed as a cosimplicial object
in ∆, with n-cosimplices given by the object [n]. The corresponding nerve
functor Nid sends [m] to the simplicial set ∆m, the standard m-simplex.

Example A.4. The previous example gives a functor ∆ → sSet, which we can
think of as a cosimplicial simplicial set ∆•: the n-cosimplices are the simpli-
cial set ∆n. This is known as the standard cosimplicial simplicial set.
The corresponding nerve functor N∆• is the identity functor on sSet, since for
any simplicial set K, the set of n-simplices Kn is naturally in bijection with
Hom(∆n,K).

Example A.5. Let ∆• : ∆ → Top denote the standard cosimplicial space;
the n-cosimplices are the standard n-simplex ∆n ⊆ Rn+1. The corresponding
nerve is the singular simplicial set functor Sing : Top→ sSet.

Example A.6. Recall that ∆ is defined to be the category with elements the
posets [n] and morphisms the monotone maps. But a poset can be viewed as
a category, and a monotone map between posets is then the same thing as a
functor. Hence we obtain a functor ∆̃ : ∆ → Cat which sends the poset [n]
to the category [n]. We view ∆̃ as a cosimplicial category and refer to it as
the standard cosimplicial category. The corresponding nerve functor is the
usual nerve N : Cat→ sSet.
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Example A.7. A 2-category has a Duskin nerve, which is the nerve with re-
spect to ∆̃, viewed as a cosimplicial 2-category.
Example A.8. A simplicially enriched category has a homotopy coherent
nerve, which is the nerve with respect to a certain cosimplicial simplicially
enriched category, the path category Path[•]. This functor gives the compari-
son between simplicially enriched categories and quasicategories. An equivalent
construction views a simplicially enriched category C as a simplicial object in
categories (whose simplicial set of objects is constant), applies the nerve level-
wise to obtain a bisimplicial set, and then totalises.
Example A.9. A dg category has a dg nerve, which gives the comparison
between dg categories and quasicategories. It is possible to view this in the above
framework although the specifics are tricky: Faonte has a nice construction
using a cosimplicial A∞-category. There are several other ways to convert dg
categories to quasicategories: given a dg category C one can truncate the hom-
complexes and then apply Dold–Kan to them to end up with a category enriched
in simplicial vector spaces. One then forgets the linear structure to obtain a
simplicially enriched category, and one can then convert this into a quasicategory
as above.

A.2 Realisation
Let X : S → C be a functor, so that we can define its associated nerve NX .

Theorem A.10. If C is cocomplete, the nerve functor NX has a left adjoint,
the realisation functor | − |X .

Proof. We’ll sketch a proof in the case S = ∆; the general case is no harder.
First define |∆n|X := Xn. Since every simplicial set is generated by the standard
n-simplices under colimits, we simply extend the above formula by colimits to
define it for all simplicial sets K. In other words, for K ∼= colimel(K) ∆

n we put
|K|X := colimel(K) X

n.
We then have

Hom(|K|X , c) ≃ Hom(| colim∆n|X , c)

≃ Hom(colimXn, c)

≃ limHom(Xn, c)

≃ limNX(c)n

≃ limHom(∆n, NX(c))

≃ Hom(colim∆n, NX(c))

≃ Hom(K,NX(c)).

as required.

Remark. More formally, the realisation functor is constructed as a left Kan
extension or as a coend |K|X :=

∫ n
Xn ·Kn; this formalises the phrase “extend

via colimits”.
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Example A.11. Realisation with respect to the standard cosimplicial simplicial
set ∆• is the identity functor (exercise: convince yourself of this directly from
the definition!).

Example A.12. Realisation with respect to the standard cosimplicial space ∆•

is the geometric realisation functor.

Example A.13. Realisation with respect to the standard cosimplicial category
∆̃• is the homotopy category of a simplicial set.

A.3 Enriched nerves
One can also carry out the nerve construction in the presence of an enrichment.
Let V be a closed symmetric monoidal category and let C be a V -category.
Given a cosimplicial object X ∈ C, one obtains a V -enriched nerve NX : C →
sV via the usual formula. If C has enough V -colimits then NX admits a left
adjoint, which realises a simplicial V -object as an object of C.

Example A.14. If V = Set we recover the usual nerve-realisation construction.

Example A.15. If A is a commutative ring, take V to be the category of A-
modules. Then the category Ch(A) is V -enriched, and has enough V -colimits.
Applying the functor of normalised chains to the standard cosimplicial simplicial
set ∆ → sSet yields a cosimplicial chain complex X which at level n is the
complex of normalised chains on ∆n. The V -enriched nerve with respect to X
then yields a functor K : Ch(A) → sMod − A which is the K appearing in
the Dold-Kan correspondence. The inverse of K is then the realisation functor
| − |X .
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