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These are some notes on model categories, primarily written to assist me
personally in learning the theory, and secondarily as a loose set of notes for
a talk. As such they’re highly informal and omit all of the relevant proofs.
Hopefully they deliver some of the intuition.

I primarily used two sets of notes in writing this: Dwyer and Spalinski’s
Homotopy Theories and Model Categories, and the first two sections of the notes
from Vezzosi’s seminar Autour de la Géométrie Algébrique Dérivée. These notes
are very heavily based on the above two documents.

1 Motivation
Model categories were originally developed as an abstraction of homotopy the-

ory. Let’s suppose we only care about topological spaces up to some weak form
of equivalence. These could be homotopy equivalences or even weak homo-
topy equivalences, maps X → Y which induce isomorphisms πnX → πnY .
Then we want to invert these weak equivalences in some sense, i.e. view our
objects and morphisms ‘up to homotopy’. If we invert homotopy equivalences,
then we want to end up with with some category of ‘homotopy types’.

If we invert the weak homotopy equivalences we expect to obtain the category
of CW complexes, since it is a theorem that any (Hausdorff) topological space
is weakly homotopy equivalent to a CW complex. CW complexes are a very
nice class of spaces: Whitehead’s Theorem tells us that any weak homotopy
equivalence between connected CW complexes is actually a homotopy equiva-
lence. A theme of model category theory is to replace our objects by weakly
equivalent objects that are better behaved.

A useful class of maps in homotopy theory is the class of fibrations, maps
E → B that satisfy the homotopy lifting property: for any homotopy
H : X × [0, 1] → B, if we can lift H(x, 0) to E then we can lift all of H to E
extending the original lift. Fibrations generalise fibre bundles. Dually we have
the class of cofibrations: maps satisfying the homotopy extension property.
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Our strategy in defining a model category will be to define three classes of
morphisms: weak equivalences, fibrations, and cofibrations. We’ll code up some
of their properties in axioms and see what comes out. We’ll aim to define the
homotopy category Ho(C) of a model category C, which is the category obtained
by inverting the weak equivalences.

Model categories have applications beyond topology: the category of chain
complexes of R-modules for a fixed ring R can be given a model structure. In
this case the homotopy category is the derived category. We can recover a lot
of homological algebra via the machinery of model categories. More generally,
if we want to invert weak equivalences in an algebraic way, model categories are
a useful tool.

2 The axioms
The axioms for a model category (sometimes called a closed model cate-

gory or Quillen model category) are simply an abstraction of some proper-
ties of homotopy theory. Accordingly, a model structure on a category C is
determined by three distinguished classes of morphisms in C, along with some
axioms. The distinguished classes are the weak equivalences, fibrations and
cofibrations. We stipulate that the distinguished classes are closed under com-
position, and that every identity map idA : A→ A is a fibration, a cofibration,
and a weak equivalence.

The morphisms we’re interested in are the weak equivalences, since we wish
to turn these into isomorphisms. The fibrations and cofibrations are in some
sense just technical machinery to allow us to do this. We often denote weak
equivalences by ∼−→.

When we want to refer to the classes of weak equivalences, fibrations and
cofibrations we call them W, Fib and Cof respectively. Fibrations that are
also weak equivalences are called acyclic fibrations, and similarly cofibrations
that are weak equivalences are called acyclic cofibrations. So the acyclic
cofibrations are W ∩Cof and the acyclic fibrations are W ∩ Fib.

There are four axioms for the model structure:

Axiom 1 If f, g are composable maps, and if any two of f , g, or fg are
weak equivalences then so is the third ("two-out-of-three property"). This is a
property of (weak) homotopy equivalences.
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Axiom 2 A map f is a retract of a map g if there is a commutative diagram
of the form

A B A

A′ B′ A′

i

id

f

r

g f

i′

id

r′

Intuitively, if we think of this happening in some nice category of topological
spaces, then A is a retract of B, A′ is a retract of B′, and f, g respect the
retractions. Axiom 2 says that the distinguished classes are closed under retracts
(i.e. if g is a distinguished morphism and f is a retract of g then f is also
distinguished).

Axiom 3 The homotopy lifting axiom. Given a commutative diagram

A X

B Y

f

i p

g

(1)

where i is a cofibration, p a fibration, and at least one of i and p are weak
equivalences, then there exists a map h : B → X making the diagram commute.
The map h is called a lift in the diagram.

Axiom 4 The factorisation axiom. This says that every morphism f in C
factors as f = p ◦ i, where i is a cofibration, p a fibration, and at least one of
i and p are weak equivalences. Note that these splittings are not necessarily
functorial. However, in many cases, we can choose functorial splittings - an
important technique for constructing splittings is the small object argument,
which (if C is sufficiently nice) allows us to transfinitely construct factorisations,
which we can choose to be functorial.

We say that a category C with a model structure is a model category if
it has all finite limits and colimits (in particular, initial and terminal objects
exist).

3 Properties of model categories
Duality Note that the axioms are very symmetric: if C is a model category,
then Cop is a model category in a natural way, where the cofibrations in Cop are
precisely the fibrations in C and vice versa. This is the model category analogue
of Eckmann-Hilton duality in homotopy theory.
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In fact we can say more: if we’ve already chosen our weak equivalences, then
the cofibrations are completely determined by the fibrations and vice versa. A
map i : A→ B is said to have the left lifting property ("LLP") with respect
to a map p : X → Y if a lift exists in any commutative square of the form (1).
Then the cofibrations are precisely the maps that have the LLP with respect to
acyclic fibrations.

The right lifting property ("RLP") is defined similarly. The fibrations are
precisely the maps that have the RLP with respect to acyclic cofibrations.

Initial and terminal objects Any model category C has an initial object ∅
and a terminal object ∗. An object X is said to be fibrant if the unique map
X → ∗ is a fibration. X is cofibrant if the unique map from ∅ is a cofibration.
Fibrant and cofibrant objects have nice properties with regard to homotopy and
will become important later.

Reprise of the axioms Given the facts about the RLP and the LLP above,
a quick way to state Axioms 3 and 4 is to say that C comes equipped with two
weak factorisation systems (W ∩ Cof,Fib) and (Cof,W ∩ Fib). Moreover,
Axiom 2 (the retracts axiom) is a consqeuence of axioms 1,3 and 4, though the
proof is nontrivial. So if we were to pick a ’quick’ set of axioms we’d specify the
two-out-of-three property of weak equivalences and the existence of the weak
factorisation systems.

4 Examples of model categories
It’s often quite difficult to verify that a given category is in fact a model

category. So we skip doing that here, and just state a few examples.

The prototypical example of a model category is Top, the category of topo-
logical spaces. One model structure is given by letting the weak equivalences
be weak homotopy equivalences and fibrations Serre fibrations. If we restrict to
compactly generated Hausdorff spaces then the homotopy category is equivalent
to the category of CW-complexes and maps up to honmotopy equivalence. In
general to get nice topological results we have to restrict to a ’convenient cate-
gory’ of topological spaces since the whole category Top is very badly behaved
from a homotopy-theoretic perspective.

There’s another model structure on Top: this time the weak equivalences are
the homotopy equivalences, and the fibrations are the (topological) fibrations:
maps that satisfy the homotopy lifting property. With respect to this struc-
ture, Ho(Top) is the category of topological spaces with maps up to homotopy
equivalence.
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If R is a commutative ring, the category Ch(R-Mod) of chain complexes of
left R-modules and chain maps admits a model structure: the weak equivalences
are the quasi-isomorphisms (maps inducing isomorphisms on homology) and the
fibrations are the maps that are modulewise surjective. The cofibrant objects are
the chain complexes of projective modules. In this case the homotopy category
is the derived category.

The model structure above on Ch(R-Mod) is called the projective model
structure. Dually we also have the injective model structure, where the
cofibrations are the modulewise injective maps. The category Ch+(R-Mod) of
nonnegatively graded chain complexes admits analogous model structures.

If C is a model category and A an object then the category A ↓ C of objects
under A inherits a model category structure. As an example, if ∗ is the one-
point topological space then the category ∗ ↓ Top is just the category Top∗ of
pointed topological spaces.

The category sSet of simplicial sets is a model category: the weak equiva-
lences are maps f whose geometric realisation |f | is a weak homotopy equiva-
lence, and the cofibrations are the maps g whose components gn are injective for
all n. Note that we’re just pulling back the model structure from Top via the
geometric realisation functor. In this case Ho(sSet) is equivalent to Ho(Top),
where Top is given the first model structure. So sSet is a good combinatorial
model for homotopy theory in Top.

In general, if C is a category then we have the category sC of simplicial objects
in C. When C is a reasonable-looking category with a forgetful functor to Set
(think of the categories of groups, rings, vector spaces, Lie algebras. . . ) then
sC has a model category structure induced by pulling back the model structure
on sSet. In particular if we look at R-Mod, then sR-Mod is equivalent to
Ch+(R-Mod) by the Dold-Kan correspondence, and hence the homotopy the-
ory of sR-Mod is just homological algebra in R-Mod. In this sense homotopy
theory can be said to be homological algebra in Set!

A non-interesting example: every category C with finite limits and colimits
can be given the trivial model structure, where the weak equivalences are
the isomorphisms and every morphism is both a fibration and a cofibration. In
this case Ho(C) is just C again.

The category Cat of all small categories can be given a model structure
where the weak equivalences are the equivalences of categories. Moreover there
is a unique model structure with this property, called the canonical model
structure. The cofibrations are the functors injective on objects.
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Analogously, the categoryGrpd of all small groupoids admits a unique model
structure where the weak equivalences are the equivalences of groupoids.

5 Homotopy
We want to define a notion of homotopy between two maps. This takes a bit

of technical machinery. In general we need to define notions of left homotopy
and right homotopy. In the important cases these will turn out to be the
same. We need these left and right notions since in Top there are two equivalent
ways of defining a homotopy between maps X → Y : we can either look at ‘left
homotopies’ X × [0, 1] → Y or ‘right homotopies’ X → Y [0,1]. In general we
don’t expect these two notions to be the same!

For a topological space A the cylinder A× [0, 1] comes equipped with a map
AqA→ A×[0, 1] identifying A with the ends of the cylinder. Moreover, A×[0, 1]
is homotopy equivalent to A via the quotient map, and the composite of these
two maps is the codiagonal AqA→ A. Note that a homotopy between two maps
f, g : X → Y is the same thing as a factorisation of the map f + g : X qX → Y
through the map to X × [0, 1]. These are more or less the properties that make
the cylinder useful in homotopy theory.

With this in mind, a cylinder object for an object A in a model category
is an object A ∧ I factoring the codiagonal map idA + idA : A q A → A into
A q A i−→ A ∧ I ∼−→ A. Keep in mind that A ∧ I is just a notation - cylinder
objects may not be functorial in any way, and in general are not unique (they
do exist, since A is a cylinder object for A). Since we have two canonical maps
n1, n2 : A→ AqA we get two structure maps i1 = i ◦n1 and i2 = i ◦n2 from
A to A ∧ I.

Two maps f, g : A→ B are said to be left homotopic if there exists a map
H : A ∧ I → B such that the diagram

A

AqA A ∧ I B

A

n1

f

i H

n2

g

commutes. Note that this is the same thing as a factorisation f + g = H ◦ i.

We can dualise the definition of cylinder object to get the definition of a path
object BI , which comes equipped with maps B ∼−→ BI

p−→ B ×B factoring the
diagonal map. Path objects are the analogues of path spaces PB in topology.
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Right homotopies are defined with path objects in an analogous way: two maps
f, g : A→ B are said to be right homotopic if there exists a map H : A→ BI

such that the diagram

B

A BI B ×B

B

f

g

H p

π1

π2

commutes. Note that this is the same thing as a factorisation f × g = p ◦H.

If A is cofibrant and B is fibrant then the left and right homotopy relations
on the set HomC(A,B) agree, and we get an equivalence relation which we call
homotopy. The set of homotopy equivalence classes of maps from A to B is
denoted π(A,B).

An object that’s both fibrant and cofibrant is called fibrant-cofibrant. If A
and B are fibrant-cofibrant then we can say even more: a map f : A → B is
a weak equivalence if and only if f is a homotopy equivalence, i.e. there exists
a map g : B → A such that gf and fg are both homotopic to the identity.
This is the analogue of Whitehead’s Theorem in Top, which says that a weak
homotopy equivalence between CW complexes is the same thing as a homotopy
equivalence.

6 The homotopy category
The above section gives us an idea of how to invert weak equivalences, at least

on the full subcategory Ccf of fibrant-cofibrant objects: pass to the appropri-
ate ’homotopy category’ πCcf whose morphisms are homotopy classes of maps.
Then a weak equivalence in Ccf becomes an isomorphism in πCcf .

So to extend this idea to the whole category C, we want first to replace our
objects by weakly equivalent fibrant-cofibrant objects. To do this, for each object
X apply the factorisation axiom to the map ∅ → X to obtain an acyclic fibration
QX → X with QX cofibrant. Similarly we obtain an acyclic cofibration to a
fibrant object X → RX.

The assignmentsX 7→ RX andX 7→ QX are functors (recall that the splitting
in the factorisation axiom need not be functorial). The functor F = RQ : C → Ccf
takes an object to a fibrant-cofibrant replacement. In fact F induces a functor
F ′ from C to πCcf . Then we have that HomπCcf

(F ′X,F ′Y ) ∼= π(FX,FY ).
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The homotopy category Ho(C) of a model category C is the category with
the same objects as C, but HomHo(C)(X,Y ) := HomπCcf

(F ′X,F ′Y ). So we
replace the objects by weakly equivalent fibrant-cofibrant objects, and then
consider the class of maps between them up to homotopy. Note that we could
have used the functor QR instead of RQ; we’ll soon give a symmetric definition
of the homotopy category that makes that easier to see.

Denote by γ the functor sending a model category to its homotopy category.
Morphisms in Ho(C) work as we want them to: if f is a morphism in C then
γ(f) is an isomorphism if and only if f is a weak equivalence.

One way to invert morphisms in a category is to localise; if W is a class of
morphisms in C then a localisation ofW is a functor l : C → D such that l(f) is
an isomorphism for every f ∈W , along with the specification that l is universal
among such functors (every such functor factors through l). So if localisations
exist, any two are naturally isomorphic.

If C is a model category and W is the set of weak equivalences, then γ :
C → Ho(C) is a localisation of W . This gives us a nice quick definition of the
homotopy category, without the model category formalism. So why don’t we
just work with localisation at weak equivalences and forget the model category
framework?

One of the advantages is that we can describe morphisms in the homotopy
category more concretely if we work with model categories. Another advan-
tage is that model categories resolve some of the set-theoretic issues around
localisation.

7 Adjunctions and equivalences
We want to formulate the right notion of an adjunction or an equivalence

between two model categories. This turns out to be the concept of a Quillen
adjunction or Quillen equivalence. Let F : C ←→ D : G be an adjunction
between model categories. This is said to be a Quillen adjunction if any of
the following equivalent conditions are satisfied:

• F preserves cofibrations and G preserves fibrations

• F preserves cofibrations and acyclic cofibrations

• G preserves fibrations and acyclic fibrations

• F preserves acyclic cofibrations and G preserves acyclic fibrations

In this situation we sometimes call F a left Quillen functor and G a right
Quillen functor.
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A Quillen adjunction is said to be a Quillen equivalence if for every cofi-
brant X in C and every fibrant Y in D, a map X → G(Y ) is a weak equivalence
if and only if the corresponding map F (X)→ Y is a weak equivalence. We’ll see
soon that Quillen equivalences induce equivalences of the respective homotopy
categories, via their derived functors.

8 Derived functors
Let C be a model category, D any category and F : C → D a functor. Ideally,

F will descend to a functor hF : Ho(C) → D, i.e. factor through the map
γ : C → Ho(C). When it does, we’d like to choose a universal such functor. The
left and right derived functors of F are reasonable definitions for this.

Consider the class of pairs (G, t) where G : Ho(C) → D is a functor and
t : Gγ → F is a natural transformation. A left derived functor (LF, t) of
F is a left-universal pair in the sense that for any element (G, s) there exists a
natural transformation s′ : G→ LF such that we have a commutative diagram

F

Gγ (LF )γ

s

s′

t

A right derived functor is a right-universal such functor.

If left derived functors of F exist, then there is only one up to canonical
natural isomorphism. But left derived functors may not always exist! They
do if F satisfies a few properties. For example if F takes weak equivalences to
isomorphisms, its left derived functor LF exists since F will factor through the
localisation.

If D is a model category we may compose F with the functor γ to get a
functor Fγ : C → Ho(D). With this in mind the total left derived functor of
F is the functor LF := L(Fγ) : Ho(C)→ Ho(D). So total left derived functors
allow us to consider our functors ’up to homotopy’ in a universal way.

Quillen adjunctions induce adjunctions on the homotopy category. More pre-
cisely, let F : C ←→ D : G be a Quillen adjunction. Then the total left and right
derived functors LF : Ho(C) ←→ Ho(D) : RG exist and form an adjoint pair.
Moreover, if the pair (F,G) is a Quillen equivalence then their total derived
functors above are an equivalence of categories.

Example The adjoint pair | · | : sSet←→ Top : Sing is a Quillen equivalence
and hence we get an equivalence Ho(sSet)←→ Ho(Top).
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Not all equivalences between homotopy categories arise this way! There are
examples of model categories C and D where Ho(C) is equivalent to Ho(D), but
C and D are not Quillen equivalent.

9 Homotopy limits and colimits
Limits and colimits in general do not respect homotopy equivalences. For

example, in Top we have a commutative diagram

Dn Sn−1 Dn

∗ Sn−1 ∗

where the vertical maps are homotopy equivalences. The pushout of the top row
is Sn and the pushout of the bottom row is ∗. But the induced map Sn → ∗ is
not a homotopy equivalence!

Recall the definition of a colimit: if J is a category then CJ is the category
of diagrams of type J in C and we have a functor colim: CJ → C, left adjoint to
the constant diagram functor ∆ : C → CJ . So to take colimits in a homotopy
invariant manner we could pass to the total derived functor Lcolim.

If we want to take colimits up to homotopy, we’d better have some notion of
homotopy of diagrams of type J . That is, we want to put a model structure
on CJ ; hopefully one that allows us to take total left derived functors to get
homotopy colimits Lcolim and homotopy limits Rlim. Note that Lcolim
will be adjoint to R∆ and Rlim will be right adjoint to L∆.

Homotopy colimits will not be the same as colimits in the homotopy category:
the categories Ho(CJ) and Ho(C)J have no reason to be equivalent!

A problem is that homotopy colimits in general do not exist. We’re going to
need some extra structure on either J or C. In what follows we describe one
such situation where extra structure on J gives us what we want.

A subcategory R′ of a category R is said to be wide (sometimes lluf) if
Obj(R′) = Obj(R). A Reedy category is a category R equipped with two
wide subcategories R+ and R− and a degree function d : Obj(R)→ N such that

• Every nonidentity morphism in R+ raises the degree

• Every nonidentity morphism in R− lowers the degree

• Every morphism in R admits a factorisation into a morphism from R−

followed by a morphism from R+
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Many of the categories we’d like to take colimits over are Reedy categories,
including

• Any ordinal

• The simplex category ∆

• Many typical ’diagram categories’ such as the pushout category (• ← • → •),
the coequaliser category (•⇒ •), and the direct limit category (• → • → · · · )

• The opposite of any Reedy category

If C is any model category and J is a Reedy category, then it turns out that
CJ has a natural model structure where homotopy colimits exist.

10 From model categories to (∞, 1)-categories
We often think of model categories as carrying, in addition to the morphisms

and homotopies, some kind of higher homotopical data. Passing to the homo-
topy category discards this higher information. So given a model category, we’d
like to define some category that keeps track of the higher homotopical data.

More technically, given a model category we’d like to define an (∞, 1)-category:
an ∞-category where all higher morphisms are invertible. This associated
(∞, 1)-category should remember the higher homotopical information about our
original category. There are lots of ways of making this definition, depending
on your precise meaning of (∞, 1)-category.

If you think of (∞, 1)-categories as quasicategories (i.e. certain kinds of simpli-
cial set) then we can build an (∞, 1)-category out of a model category by taking
the simplicial nerve of the subcategory of fibrant-cofibrant objects. This qua-
sicategory knows the higher homotopical information about our original model
category.

However, we want to think of (∞, 1)-categories as simplicially enriched cate-
gories - categories where the hom sets are simplicial sets. Thinking of a simplicial
set as basically the same thing as a topological space, we see that for any two
objects we want to define a mapping space between them.

One of our intuitions for a mapping space Map(X,Y ) is that the connected
components of Map(X,Y ) should correspond to the homotopy classes of maps
from X to Y . This is because a homotopy from f to g should correspond to a
path between them in the space Map(X,Y ).
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11 Mapping spaces
Let’s go back to thinking about the category Top of topological spaces. Let

[X,Y ] denote the set of homotopy classes of maps fromX to Y . Then the functor
[−,−] encodes a lot of homotopical information: for example πn(X) = [Sn, X]
(we are being a little careless about basepoints here). Note that we can identify
homotopies of maps from X to Y with maps from X × |∆1| to Y .

Setting Xn = X × |∆n|, we see that maps Xn → Y should record ‘n-th
order homotopies’ between maps X → Y . Note that the Xn together form
a cosimplicial object in Top. Moreover, X0 ∼= X and Xn ' X since |∆n| is
contractible.

If cX∗ is the constant simplicial object atX we have a natural mapX∗ → cX∗

where the maps are objectwise weak equivalences. Since the simplex category
∆ is a Reedy category, the existence of this map is equivalent to saying that we
have a Reedy weak equivalence X∗ → cX∗ in Top∆.

We can generalise this to any model category. Let X be an object of a model
category C. Then a cosimplicial resolution of X is a acyclic cofibration
A∗ → cX∗ in the model category C∆. Dually a simplicial resolution of X is
a acyclic fibration cX∗ → A∗ in C∆op .

If A∗ → cX∗ is a cosimplicial resolution, then A0 → X is an acyclic cofibration
and the map A0 q A0 → A1 → A0 is a cylinder object for A0. This is a good
clue that a cosimplicial resolution of X records a lot of the higher homotopical
data about X. Loosely we can think of the An as higher cylinder objects for X.

Suppose that in our model category we can construct splittings of maps (as
in the factorisation axiom) functorially. Then we can also construct cosimplicial
resolutions functorially. In what follows we assume we can do this and hence
have a cosimplicial resolution functor r : C → C∆, along with an analogous
simplicial resolution functor r̄. Since cosimplicial resolutions are unique up to
weak equivalence, choosing a particular functor for good won’t affect what we
want to do.

Using cosimplicial resolutions we can construct mapping spaces. First note
that if X and Y are objects then Hom(rX, Y ) is a simplicial set. This suggests
that to get a mapping space we should take a cosimplicial resolution for X. But
we should probably also replace Y by a simplicial resolution too.

With this in mind, if X and Y are objects in a model category, then we
can form a bisimplicial set Hom(rX, r̄Y ). We can take the diagonal of this
bisimplicial set to get a (fibrant) simplicial set mapC(X,Y ) which we call the
homotopy function complex from X to Y .
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Technically this is a two-sided function complex. We could have chosen
just a cosimplicial resolution for X or a simplicial resolution for Y to get a
left (resp. right) function complex. In either case we’d have ended up with
something weakly equivalent to our original definition.

If we hadn’t fixed a cosimplicial resolution functor, we’d have to keep track
of the cosimplicial resolutions we chose to define our function complexes with.
However, doing this doesn’t make things appreciably harder.

One of our intuitions for mapping spaces is that the set π0mapC(X,Y ) of path
components of mapC(X,Y ) should be in bijection with the homotopy classes of
maps from X to Y . This does indeed happen with this construction.

Finally, we can say that weakly equivalent objects have weakly equivalent
mapping spaces: if f : X ∼−→ Y is a weak equivalence then f induces weak
equivalences mapC(W,X) ∼−→ mapC(W,Y ) and mapC(X,Z) ∼−→ mapC(Y, Z), as
long as W is cofibrant and Z is fibrant.

Example In the category of simplicial sets, mapsSet(X,Y ) is the simplicial set
that at level n has the set HomsSet(X ′×∆n, Y ′), where X ′ and Y ′ are fibrant-
cofibrant replacements for X and Y . This agrees with our intuition that maps
X ×∆n → Y should record ‘n-th order homotopies’ between maps X → Y .

12 Bousfield localisation
Suppose we have a model category C and we want to localise the homotopy

category Ho(C). Since Ho(C) forgets a lot of homotopical information, we’d like
some localisation procedure that remembers this information. So rather than
working at the level of Ho(C), we want to add more weak equivalences to C such
that when we pass to the homotopy category we obtain the desired localisation.

As always, we’d like to define a universal such ’homotopy localisation’. With
this in mind, suppose C is a model category and S a class of morphisms of C.
Consider the class of pairs (D, F ) where D is a model category and F is a left
Quillen functor (the left adjoint of a Quillen adjunction) such that the total
left derived functor LF : Ho(C) → Ho(D) takes images of morphisms in S to
isomorphisms. Then we define a left localisation of C with respect to S to be
a pair (LSC, l) universal among such pairs.

Right localisations have a similar definition. Since the theory of right local-
isations is dual to that of left localisations, we’ll only consider left localisations
in what follows.
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We’d like to characterise the morphisms in C that map to isomorphisms when
we take a left localisation with respect to S. One approach is to look at the
objects that make the morphisms in S look like weak equivalences.

With this in mind, say that a fibrant object X is S-local if for every morphism
f : A→ B in S the induced morphism of function complexes
f∗ : mapC(B,X) → mapC(A,X) is a weak equivalence of simplicial sets. Say
that a map f : A → B is an S-local equivalence if for every S-local object X
the induced morphism f∗ above is a weak equivalence.

Then the S-local equivalences capture abstractly what morphisms map to
isomorphisms under localisation. Let F : C ←→ D : G be a Quillen pair, and S
a class of arrows in C. Then LF takes the images of arrows in S to isomorphisms
in Ho(D) if and only if F takes S-local equivalences between cofibrant objects
into weak equivalences.

Let C be a model category and S a class of morphisms. The left Bousfield
localisation with respect to S is a new model category LSC with the same
underlying category as C but with more distinguished morphisms:

• The weak equivalences of LSC are precisely the S-local equivalences of C

• The cofibrations of LSC are precisely the cofibrations of C

• The fibrations of LSC are precisely the maps with the right lifting property
with respect to the acyclic (in LSC) cofibrations.

So we add in more weak equivalences and keep the cofibrations the same. Since
the weak equivalences together with the cofibrations determine the fibrations,
we have to add more fibrations too. A right Bousfield localisation is defined
similarly: the weak equivalences are the same as in the left localisation but we
keep the fibrations constant and add cofibrations.

Note that we specify that these new classes of distinguished morphisms must
put a model structure on LSC. This is not always the case if we let C and S
be arbitrary! So left (resp. right) Bousfield localisations do not always exist.
But if they do they are left (resp. right) localisations. Perhaps it would be
more appropriate to call the category obtained from C by adding more weak
equivalences a left (resp. right) ‘prelocalisation’, and if the prelocalisation is a
model category then we call it the Bousfield localisation.

If C satisfies some technical hypotheses - namely, if it is cellular and left
(resp. right) proper then a left (resp. right) Bousfield localisation exists.
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