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One can write down a (multivariate) polynomial p, with integer
coefficients, that has a solution in natural numbers if and only if
ZFC? is inconsistent.

?Zermelo-Fraenkel Set Theory with the Axiom of Choice

@ In fact, one can take p to have at most 9 variables, or to be a
quartic (but not both at once). Moreover, the theorem
doesn’t use any special properties of ZFC!

@ Disclaimer: I'm not a logician. I'll skim over some
technicalities and maybe make some nonstandard definitions.



What kind of polynomial is p?

@ | don't mean a polynomial like

x+1 if ZFC is consistent
p(x) =

x —1 if ZFC is inconsistent

This is cheating!

o Nor do | mean a polynomial like p(x) = x? + 1, since ZFC
proves that this has no (natural) solutions. If this is our p,
then ZFC is consistent, and also proves its own consistency,
which contradicts Godel’s second incompleteness theorem.

@ So p must be fairly complicated - if ZFC is consistent, then p
has no solutions, but ZFC doesn't prove this!



Some terminology

Let S CN.

@ Say that S is recursively enumerable (r.e. for short) if there
is an algorithm A, that takes natural numbers as input, that
halts on input n if and only if n € S.

o Equivalently, there's an algorithm B, that takes infinite time
to run, that prints out precisely the elements of S. Intuitively,
given A, run A[n] at time n, and whenever A[n] finishes print
n. Given B and n, just run B and check whether n shows up.

@ For example the set of prime numbers is r.e.

@ Note that non-r.e. sets must exist by a cardinality argument!



The MRDP theorem

e Say that S is diophantine! if there is a polynomial
q(xo, - - -, Xm) with coefficients in Z such that n € S if and
only if there exist a1, ...,am € N with q(n, a1,...,am) =0.
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The MRDP theorem

e Say that S is diophantine! if there is a polynomial
q(xo, - - -, Xm) with coefficients in Z such that n € S if and
only if there exist a1, ...,am € N with q(n, a1,...,am) =0.

o Clearly a diophantine set is r.e. - just enumerate all tuples of
natural numbers (n, a1, ..., am), plug them into g, and if the
answer is zero then add n to the list. Is the converse true?

Theorem (Matiyasevich—Robinson-Davis—Putnam, 1970)

Any recursively enumerable set S is diophantine. Moreover, given
an algorithm that prints out S, we can write down a polynomial g.

!Named after Diophantus, 3™ century Greek mathematician who studied
these kinds of equations.
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Motivation: Hilbert's Tenth Problem

@ Question: Is there an algorithm A, that accepts polynomials
over Z as arguments, that will tell us whether p has a root in
N or not?

@ MRDP tells us that if the answer is yes, then every r.e. set S
is recursive, meaning that there's an algorithm that accepts
natural numbers n as input and tells us whether or not n € S.
To see this, given S, we can write down p, and then apply A
to g := p(n,x2,...,Xm), since n € S if and only if g has roots.

@ Since there exist r.e. sets which are not recursive, no such A
can exist.



Putnam'’s trick: generating polynomials

o If Sisar.e. set (with 0 ¢ S), by the MRDP theorem it's
diophantine. Take a polynomial M(xo,...,xm) such that
n € S if and only if M(n, x1,...,xm) has a solution in natural
numbers. Replacing M by M? if necessary, we may assume
that M is nonnegative. Then setting Q := xp(1 — M), we see
that the positive values taken by @ as xp, ..., X, range across
N are precisely the members of S.

@ Jones, Sato, Wada and Wiens wrote down such a polynomial
Q® when S is the set of prime numbers:



A prime generating polynomial

(k+2{1-[wz+h+j-q]'~[(gk+2g+k+1)-(h+j)+h -z ~[2n+p+q+z—c]
~[16(k +17-(k +2)-(n+ 1) +1- PP~ [€*- (e +D(a+ 1V + 1= 07 ~[(a’~ )y*+1 - x7p
~[16ry*(@*- 1)+ 1-wP=[((a + w(u’ - @) - 1)- (n +4dyy + 1= (x + )P —[n+ 1+ v~ y]
~[@*-1)P+1-m’P—[ai+k+1-1-i] ~[p+l(a-n-1)+bRan+2a-n*-2n-2)-mJ

-lg+y(a-p-1)+sQap +2a—-p*-2p-2)~xJ? ~[z +pl(a - p)+1Q2ap - p*- 1)~ pm]}

Figure: A polynomial whose positive values (as a, ...,z range across N)
are precisely the prime numbers. It also takes negative values; e.g. -76.



|dea of today's proof

@ Code up proofs in ZFC as natural numbers (Gédel numbering)

o Write an algorithm that looks at a natural number and
decides whether it codes a proof of a contradiction in ZFC

@ Get a r.e. set S expressing consistency of ZFC

@ Apply the MRDP theorem to S to get the polynomial p.



Model theory, 1

e A theory T is a pair (0, A) where o, the signature, is a tuple
(F, R, C) of function symbols, relation symbols, and constant
symbols, and A is a set of axioms.

e Example: the theory of abelian groups has signature (+,0)
and axioms including VxVyVz((x +y) +z= x4+ (y + z)) and
Vx3dy(x +y =0).

@ A model of a theory T is a set M with functions M — M,
relations on M, and constants in M, all satisfying the axioms.

e (Z/5Z,+) is a model of the theory of abelian groups. (R,+)
is a model. S3 is not a model. (N, +) is not a model.



Model theory, 2

@ A proof of a sentence ¢ from a set of sentences ¥ is a list of
sentences @1, ..., ¢, with ¢, = ¢ and where ¢; 1 follows
from ¢; by some deduction rules applied to the previous
sentences and Y.

@ A theorem of T is a sentence ¢ with a proof. Write T F ¢ to
mean that T proves ¢. T proves ¢ if and only if ¢ is true in
all models (Gédel's completeness theorem).

@ For the theory of abelian groups, 0 + 0 = 0 is a theorem.
Vx(x + x + x = 0) is not a theorem, since not every abelian
group is 3-torsion. But its negation Ix(x + x + x # 0) is not
a theorem either, since it's false in Z/37Z. We might say that
Vx(x + x + x = 0) is independent.



Model theory, 3

o A theory T is effectively axiomatisable if there's an
algorithm that runs in infinite time that prints out precisely all
of the theorems of T.

@ Some examples of effectively axiomatised theories:

o ‘Algebraic’ theories: groups, rings, Lie algebras,...

e ‘Arithmetic’ theories: Peano arithmetic, Robinson arithmetic
(PA without induction), Presburger arithmetic (PA without
multiplication),...

o Set theories: ZFC, NBG (ZFC with proper classes),...

o Order theories: Partial orders, total orders, well-orders, real
closed fields,...

e Any theory with a finite list of axioms and a finite signature.

@ Non-examples: any complete undecidable theory, e.g. True
Arithmetic - all statements true in N.



Godel numbering

@ Suppose T is effectively axiomatisable. Then T has countably
many symbols (logical symbols, plus symbols from o, plus
variables) so we can associate to each symbol a positive
natural number. If ¢ is a sentence then we can associate a
number [¢] by taking prime powers.

@ For example if we say [0] =1, [+] =2 and [=] = 3 then we
get [0+0=0] =2%-32.51.73.11! =339,570. The
number [¢] is called the Godel number of ¢.

@ We can code up proofs in T similarly. Whether or not a
number codes a proof can be checked algorithmically.

e If T can also talk about arithmetic (e.g. if T is ZFC or PA),

then we can do this encoding inside T, and so T can talk
about itself.



Digression on the incompleteness theorems 1

Godel's First Incompleteness Theorem

If T is any consistent effectively axiomatisable theory which
contains enough arithmetic, then there is a sentence Gr, the
Godel sentence, which is neither provable nor disprovable in T.

Proof idea:
@ Define a predicate NP(n) to mean 'T does not prove the
sentence with Gédel number n'.

@ use a clever diagonalisation argument to show that for any
predicate Q, there is a sentence ¢ such that

T+ (¢ < Q([¢]).
@ Apply the above to the predicate NP to obtain a sentence Gt
such that T+ (Gt <> NP(|GT]))



Digression on the incompleteness theorems 2

So informally, Gt is true if and only if T does not prove Grt. It
follows that Gy is neither provable nor disprovable, and in
reasonable circumstances® must be true.

Godel's Second Incompleteness Theorem

If T is any consistent effectively axiomatisable theory which
contains enough arithmetic, then T does not prove its own
consistency.

Proof idea:
@ Define the sentence Con(T) to mean NP(]0 = 1]).

@ Code up the proof of the first incompleteness theorem inside
T to see that T F (Con(T) — Gr).

@ Soif TH Con(T) then T Gt, which is a contradiction. So
T can't prove Con(T).

2For example, in models of T + Con(T).
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Back to the magic polynomial

o Consider your favourite contradiction | of T. This might be
Vx(x # x), or if T contains enough arithmetic it might be
0=1.

@ Since T is effectively axiomatisable, given a natural number n
we can algorithmically check whether n encodes a proof of L.

@ This gives us a r.e. set S such that n € S if and only if n
codes for a proof of L in T. The MRDP theorem tells us that
S must be diophantine.

@ So any effectively axiomatisable theory T has an associated
polynomial pr that has solutions in N if and only if T is
inconsistent. One can write down such a pt algorithmically
from the axioms of T. There are lots of different polynomials,
since e.g. they depend on our choice of Gédel numbering.



What does T know about p7?

Let's suppose that T is consistent and contains enough
arithmetic (so it satisfies the hypotheses of the
Incompleteness Theorems). In particular pr has no roots.

We can code up the previous proof inside T to see that
T = (‘pr has no roots’ <+ Con(T)). Hence
T ¥ 'pr has no roots’, otherwise T would prove Con(T).

But if T doesn't prove a sentence ¢, there must be models
where ¢ is false. In particular there are models of T
(necessarily models of T + =Con(T)) where pr has a root!

In such a model, any root of p must necessarily be a
nonstandard natural number, corresponding to a proof of L of
nonstandard length.
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