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Theorem
One can write down a (multivariate) polynomial p, with integer
coefficients, that has a solution in natural numbers if and only if
ZFCa is inconsistent.

aZermelo-Fraenkel Set Theory with the Axiom of Choice

In fact, one can take p to have at most 9 variables, or to be a
quartic (but not both at once). Moreover, the theorem
doesn’t use any special properties of ZFC!
Disclaimer: I’m not a logician. I’ll skim over some
technicalities and maybe make some nonstandard definitions.
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What kind of polynomial is p?

I don’t mean a polynomial like

p(x) =
{

x + 1 if ZFC is consistent
x − 1 if ZFC is inconsistent

This is cheating!
Nor do I mean a polynomial like p(x) = x2 + 1, since ZFC
proves that this has no (natural) solutions. If this is our p,
then ZFC is consistent, and also proves its own consistency,
which contradicts Gödel’s second incompleteness theorem.
So p must be fairly complicated - if ZFC is consistent, then p
has no solutions, but ZFC doesn’t prove this!



Some terminology

Let S ⊆ N.
Say that S is recursively enumerable (r.e. for short) if there
is an algorithm A, that takes natural numbers as input, that
halts on input n if and only if n ∈ S.
Equivalently, there’s an algorithm B, that takes infinite time
to run, that prints out precisely the elements of S. Intuitively,
given A, run A[n] at time n, and whenever A[n] finishes print
n. Given B and n, just run B and check whether n shows up.
For example the set of prime numbers is r.e.
Note that non-r.e. sets must exist by a cardinality argument!



The MRDP theorem

Say that S is diophantine1 if there is a polynomial
q(x0, . . . , xm) with coefficients in Z such that n ∈ S if and
only if there exist a1, . . . , am ∈ N with q(n, a1, . . . , am) = 0.

Clearly a diophantine set is r.e. - just enumerate all tuples of
natural numbers (n, a1, . . . , am), plug them into q, and if the
answer is zero then add n to the list. Is the converse true?

Theorem (Matiyasevich–Robinson–Davis–Putnam, 1970)
Any recursively enumerable set S is diophantine. Moreover, given
an algorithm that prints out S, we can write down a polynomial q.

1Named after Diophantus, 3rd century Greek mathematician who studied
these kinds of equations.
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Motivation: Hilbert’s Tenth Problem

Question: Is there an algorithm A, that accepts polynomials
over Z as arguments, that will tell us whether p has a root in
N or not?

MRDP tells us that if the answer is yes, then every r.e. set S
is recursive, meaning that there’s an algorithm that accepts
natural numbers n as input and tells us whether or not n ∈ S.
To see this, given S, we can write down p, and then apply A
to q := p(n, x2, . . . , xm), since n ∈ S if and only if q has roots.
Since there exist r.e. sets which are not recursive, no such A
can exist.
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Putnam’s trick: generating polynomials

If S is a r.e. set (with 0 /∈ S), by the MRDP theorem it’s
diophantine. Take a polynomial M(x0, . . . , xm) such that
n ∈ S if and only if M(n, x1, . . . , xm) has a solution in natural
numbers. Replacing M by M2 if necessary, we may assume
that M is nonnegative. Then setting Q := x0(1−M), we see
that the positive values taken by Q as x0, . . . , xm range across
N are precisely the members of S.
Jones, Sato, Wada and Wiens wrote down such a polynomial
Q when S is the set of prime numbers:



A prime generating polynomial

Figure: A polynomial whose positive values (as a, . . . , z range across N)
are precisely the prime numbers. It also takes negative values; e.g. -76.



Idea of today’s proof

Code up proofs in ZFC as natural numbers (Gödel numbering)
Write an algorithm that looks at a natural number and
decides whether it codes a proof of a contradiction in ZFC
Get a r.e. set S expressing consistency of ZFC
Apply the MRDP theorem to S to get the polynomial p.



Model theory, 1

A theory T is a pair (σ,A) where σ, the signature, is a tuple
(F ,R,C) of function symbols, relation symbols, and constant
symbols, and A is a set of axioms.
Example: the theory of abelian groups has signature (+, 0)
and axioms including ∀x∀y∀z((x + y) + z = x + (y + z)) and
∀x∃y(x + y = 0).
A model of a theory T is a set M with functions M → M,
relations on M, and constants in M, all satisfying the axioms.
(Z/5Z,+) is a model of the theory of abelian groups. (R,+)
is a model. S3 is not a model. (N,+) is not a model.



Model theory, 2

A proof of a sentence φ from a set of sentences Σ is a list of
sentences φ1, . . . , φn with φn = φ and where φi+1 follows
from φi by some deduction rules applied to the previous
sentences and Σ.
A theorem of T is a sentence φ with a proof. Write T ` φ to
mean that T proves φ. T proves φ if and only if φ is true in
all models (Gödel’s completeness theorem).
For the theory of abelian groups, 0 + 0 = 0 is a theorem.
∀x(x + x + x = 0) is not a theorem, since not every abelian
group is 3-torsion. But its negation ∃x(x + x + x 6= 0) is not
a theorem either, since it’s false in Z/3Z. We might say that
∀x(x + x + x = 0) is independent.



Model theory, 3

A theory T is effectively axiomatisable if there’s an
algorithm that runs in infinite time that prints out precisely all
of the theorems of T .
Some examples of effectively axiomatised theories:

‘Algebraic’ theories: groups, rings, Lie algebras,...
‘Arithmetic’ theories: Peano arithmetic, Robinson arithmetic
(PA without induction), Presburger arithmetic (PA without
multiplication),...
Set theories: ZFC, NBG (ZFC with proper classes),...
Order theories: Partial orders, total orders, well-orders, real
closed fields,...
Any theory with a finite list of axioms and a finite signature.

Non-examples: any complete undecidable theory, e.g. True
Arithmetic - all statements true in N.



Gödel numbering

Suppose T is effectively axiomatisable. Then T has countably
many symbols (logical symbols, plus symbols from σ, plus
variables) so we can associate to each symbol a positive
natural number. If φ is a sentence then we can associate a
number dφe by taking prime powers.
For example if we say d0e = 1, d+e = 2 and d=e = 3 then we
get d0 + 0 = 0e = 21 · 32 · 51 · 73 · 111 = 339, 570. The
number dφe is called the Gödel number of φ.
We can code up proofs in T similarly. Whether or not a
number codes a proof can be checked algorithmically.
If T can also talk about arithmetic (e.g. if T is ZFC or PA),
then we can do this encoding inside T , and so T can talk
about itself.



Digression on the incompleteness theorems 1

Gödel’s First Incompleteness Theorem
If T is any consistent effectively axiomatisable theory which
contains enough arithmetic, then there is a sentence GT , the
Gödel sentence, which is neither provable nor disprovable in T .

Proof idea:
Define a predicate NP(n) to mean ‘T does not prove the
sentence with Gödel number n’.
use a clever diagonalisation argument to show that for any
predicate Q, there is a sentence φ such that
T ` (φ↔ Q(dφe).
Apply the above to the predicate NP to obtain a sentence GT
such that T ` (GT ↔ NP(dGT e))



Digression on the incompleteness theorems 2

So informally, GT is true if and only if T does not prove GT . It
follows that GT is neither provable nor disprovable, and in
reasonable circumstances2 must be true.
Gödel’s Second Incompleteness Theorem
If T is any consistent effectively axiomatisable theory which
contains enough arithmetic, then T does not prove its own
consistency.

Proof idea:
Define the sentence Con(T ) to mean NP(d0 = 1e).
Code up the proof of the first incompleteness theorem inside
T to see that T ` (Con(T )→ GT ).
So if T ` Con(T ) then T ` GT , which is a contradiction. So
T can’t prove Con(T ).

2For example, in models of T + Con(T ).



Back to the magic polynomial

Consider your favourite contradiction ⊥ of T . This might be
∀x(x 6= x), or if T contains enough arithmetic it might be
0=1.

Since T is effectively axiomatisable, given a natural number n
we can algorithmically check whether n encodes a proof of ⊥.
This gives us a r.e. set S such that n ∈ S if and only if n
codes for a proof of ⊥ in T . The MRDP theorem tells us that
S must be diophantine.
So any effectively axiomatisable theory T has an associated
polynomial pT that has solutions in N if and only if T is
inconsistent. One can write down such a pT algorithmically
from the axioms of T . There are lots of different polynomials,
since e.g. they depend on our choice of Gödel numbering.
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What does T know about pT ?

Let’s suppose that T is consistent and contains enough
arithmetic (so it satisfies the hypotheses of the
Incompleteness Theorems). In particular pT has no roots.
We can code up the previous proof inside T to see that
T ` (‘pT has no roots’↔ Con(T )). Hence
T 0 ‘pT has no roots’, otherwise T would prove Con(T ).
But if T doesn’t prove a sentence φ, there must be models
where φ is false. In particular there are models of T
(necessarily models of T + ¬Con(T )) where pT has a root!
In such a model, any root of pT must necessarily be a
nonstandard natural number, corresponding to a proof of ⊥ of
nonstandard length.
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