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Abstract

We introduce one of the basic ingredients of noncommutative Hodge
theory: Hochschild homology of algebras and categories.

1 Geometric motivation

Differential forms on a variety X and their sheaf cohomology groups

Hp,q(X) = Hq(X,ΩpX)

play an essential role in defining the Hodge structure on the cohomology of X.
Thus the first step towards defining noncommutative Hodge structures is to find
a good replacement for the groups Hp,q(X) when X is a noncommutative space.

In this lecture, we introduce an important invariant of algebras and cate-
gories: the Hochschild homology HH•(−). Standard references for this material
include [3, 5]. In the next lecture we will see that, when applied to the alge-
bra of functions (or category of sheaves) on a smooth variety X, the Hochschild
homology recovers the spaces Hp,q(X).

2 Hochschild homology for algebras

Let K be a field. Throughout these notes, all algebras are unital K-algebras, i.e.
they contain a multiplicative identity 1. The tensor product symbol ⊗ denotes
the tensor product over K unless otherwise specified.

Definition 2.1. Let A be a K-algebra. The Hochschild complex of A is

C•(A) =

(
· · · b // A⊗A⊗A b // A⊗A b // A

)
where A sits in degree zero, and the differential is given by

b(a0⊗· · ·⊗an) =

n−1∑
i=0

(−1)ia0⊗· · ·⊗aiai+1⊗· · ·⊗an+ (−1)nana0⊗· · ·⊗an−1
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for all a0, . . . , an ∈ A. The Hochschild homology of A is the homology of
this complex: HH•(A) = H•(C•(A),b).

Let us compute the differential d in the simplest case. Given a0, a1 ∈ A we
have that

b(a0 ⊗ a1) = a0a1 − a1a0 = [a0, a1],

the commutator of a0 and a1. Thus the zeroth Hochschild homology has a
simple interpretation, as the cocentre :

HH0(A) =
C0(A)

d(C1(A))
=

A
d(A⊗A)

=
A

[A,A]

where [A,A] ⊂ A is the subspace spanned by all commutators of A.
In general, the homology of the Hochschild complex is quite difficult to

compute directly. For this reason, it is helpful to give an interpretation of
HH•(A) as a derived functor, which often allows us to compute it using a simpler
complex.

To this end, we recall that the enveloping algebra of A is the algebra

Ae := A⊗Aop,

where Aop denotes the opposite algebra of A. By construction, a left (or right)
Ae-module is the same thing as an A-bimodule. In particular, A is both a left
and a right Ae-module, so that we may define the tensor product A⊗Ae A, and
its derived version, the Tor groups TorA

e

• (A,A).

Proposition 2.2. We have a canonical isomorphism

HH•(A) ∼= TorA
e

• (A,A).

Sketch of proof. (See, e.g. [3, Section 1.1] for more details.) To compute the Tor
group, we find a resolution of A by free Ae-modules. This resolution is given by
the bar complex

Bar•(A) =

(
· · · b′ // A⊗A⊗A⊗A b′ // A⊗A⊗A b′ // A⊗A

)
where the differential is given by

b′(a0 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

Note that this is similar to the Hochschild differential, but with less terms. If
we view A⊗n as an A-bimodule by multiplication on the leftmost and rightmost
tensor factors, then Bar•(A) becomes a complex of free Ae-modules.

Since A is unital, multiplication gives a natural surjective A-bimodule map

Bar0(A) = A⊗A // // A
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and one can show that this induces a quasi-isomorphism Bar•(A) ∼= A of com-

plexes of A-bimodules. Hence we may compute TorA
e

• (A,A) as the homology of
the complex Bar•(A)⊗AeA, but this is canonically isomorphic to the Hochschild
complex C•(A), which gives the result.

Remark 2.3. When A is commutative, this proposition has a geometric inter-
pretation in terms of the scheme X = Spec(A). Indeed Ae = O(X)⊗O(X) can
be viewed as the algebra O(X×X) of functions on the product X×X. The mul-
tiplication map A ⊗ A → A used in the bar resolution is dual to the diagonal
inclusion X ↪→ X × X. The tensor product A ⊗Ae A ∼= A is therefore naturally
interpreted as the algebra of functions on the self-intersection X ∩ X = X of
the diagonal inside X × X. This intersection is not transverse, and the failure
of transversality is measured by the higher Tor groups TorA

e

• (A,A) = HH•(A).
Indeed, one of the key ideas of derived algebraic geometry (originating from
an intersection multiplicity formula due to Serre) is that the higher Tor groups
should be considered part of the definition of X ∩ X as a “derived scheme”.

Using Proposition 2.2, we can determine the Hochschild homology of some
simple algebras.

Example 2.4. Let A = K[x1, . . . , xn] be a polynomial ring. Then the enveloping
algebra is also a polynomial ring, whose generators we give different names.

Ae = A⊗Aop ∼= K[y1, . . . , yn, z1, . . . , zn]

Under this identification, the multiplication map A ⊗ A → A is given by the
ring homomorphism that sends yi 7→ xi and zi 7→ xi. Evidently the elements
ri = yi − zi are annihilated by this map, and in fact they generate the kernel,
so that we have a presentation

A = Ae/(r1, . . . , rn)

In other words, if M := (Ae)⊕n, we have a map

M
(r1,...,rn) // Ae

whose cokernel is isomorphic to A. This extends to the Koszul complex

(∧•M,d) =
(
· · · // ∧3M // ∧2M //M // Ae

)
where ∧kM denotes the kth exterior power of M as an Ae-module, and where
the differential is given in terms of the basis elements ei ∈M by the formula

d(ei1 ∧ · · · ∧ eip) =

p∑
k=1

(−1)krikei1 ∧ · · · ∧ êik ∧ · · · ∧ eip .

One can show that the Koszul complex gives a free resolution of A as an Ae-
module; this uses the fact that the elements r1, . . . , rn form a regular sequence
(see, e.g. [1, Chapter 17]).

3



If we let N = M⊗Ae A ∼= A⊕n then by Proposition 2.2, the Hochschild
homology of A is the homology of the complex (∧•M,d)⊗AeA ∼= (∧•N ,d = 0).
Therefore

HH•(A) ∼= ∧•N

where N is a free A-module of rank n. In the next lecture, we will see that N is
best interpreted as the differential one-forms on the affine space An = Spec(A),
and view the result above as a special case of the Hochschild–Kostant–Rosenberg
theorem.

Example 2.5. Let g be a finite-dimensional Lie algebra over K, and let U(g) be
its universal enveloping algebra. Thus U(g) is the quotient

U(g) =
T(g)

(x⊗ y − y ⊗ x− [x, y])

where T(g) = K⊕ g⊕ (g⊗ g)⊕ · · · is the tensor algebra of g. By construction,
a left U(g)-module is the same data as a representation of the Lie algebra g.

Let gt denote the Lie algebra whose bracket is given by rescaling the bracket
on g by the constant t, i.e. [−,−]t = t[−,−] for t ∈ K. When t = 0, the Lie
algebra gt is abelian and its universal enveloping algebra is simply the symmetric
algebra U(gt) = Sym(g), i.e. a polynomial ring. We can view it as the algebra of
functions on the affine space g∨ (the dual vector space of g). If [−,−] 6= 0, then
U(gt) is noncommutative for t 6= 0, but the Poincaré–Birkhoff–Witt theorem
states that there is a natural isomorphism of vector spaces Sym(g) → U(g),
given by the symmetrization of the product on U(g). Thus we can view the
product on U(g) as a noncommutative deformation (quantization) of the product
on the commutative ring Sym(g).

Correspondingly, the Hochschild complex of U(g) can be computed using a
deformation of the Koszul complex from Example 2.4. More precisely, we have
a complex (U(g)⊗ ∧•g,d), where the differential is given by

d(u⊗ x1 ∧ · · · ∧ xn) =

n∑
i=1

(−1)i(xiu− uxi)⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn

+
∑
i<j

(−1)i+ju⊗ [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn

This is the complex that computes the Chevalley–Eilenberg Lie algebra homol-
ogy of U(g) as a right g-module, where the action of x ∈ g on u ∈ U(g) is given
by u · x = ux − xu for x ∈ g and u ∈ U(g); in other words, g is acting via the
adjoint representation on the bimodule U(g).

One can check that the antisymmetrization map

U(g)⊗ ∧•g→ C•(U(g))

u⊗ g1 ∧ · · · ∧ gp 7→
∑
σ∈Sp

sign(σ)u⊗ gσ1 ⊗ · · · ⊗ gσp
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is a quasi-isomorphism (see [3, Section 3.3.1] for details), so that we have an
isomorphism

HH•(U(g)) ∼= H•(g,U(g))

between the Hochschild homology and the Lie algebra homology.

3 Hochschild homology of dg algebras

We now briefly explain how to extend the definition of Hochschild homology to
the more general setting of differential graded algebras.

Definition 3.1. A (unital) differential graded (dg) algebra is a cochain
complex (A, δ) with a maps of complexes

µ : A⊗A → A

that gives an associative product on A, and a cocycle 1 ∈ A that is the multi-
plicative unit.

A dg algebra is, in particular, an algebra, so we can form the usual Hochschild
differential

· · · b // A⊗A⊗A b // A⊗A b // A
but now since A is itself a complex, this is really a double complex, where the
vertical arrows are the usual differentials on the tensor product of complexes:

...
...

...

· · · b // (A⊗A⊗A)1
b //

δ

OO

(A⊗A)1
b //

δ

OO

A1

δ

OO

· · · b // (A⊗A⊗A)0

δ

OO

b // (A⊗A)0
b //

δ

OO

A0

δ

OO

· · · b // (A⊗A⊗A)−1

δ

OO

b // (A⊗A)−1
b //

δ

OO

A−1

δ

OO

...

δ

OO

...

δ

OO

...

δ

OO

The Hochschild complex of A is then the direct sum total complex of this
double complex:

C•(A) = Tot⊕
(
· · · b // A⊗A⊗A b // A⊗A b // A

)
If A is an ordinary algebra, viewed as a dg algebra concentrated in degree zero,
this clearly recovers the previous definition.
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4 Differential graded categories

Finally, we extend to the setting of differential graded categories, which is where
many of the most interesting examples are situated. Standard references include
[2, 4].

Definition 4.1. A K-linear differential graded category (dg category for
short) is a category C enriched in complexes of K-vector spaces. More concretely,
it consists of

• a collection of objects M,N , . . . ∈ C.

• a complex C(M, N) = Hom•C(M,N ) of morphisms for every pair of objects
x, y

• composition maps

C(L,M)⊗ C(M,N )→ C(L,N )

that are morphisms of complexes, and satisfy the usual associative law
from compositions: (f ◦ g) ◦ h = f ◦ (g ◦ h).

• a cocycle 1 ∈ C(M,M) for every object M, that acts as the identity for
the composition law

If C is a dg category, then we obtain a K-linear category H0(C) by taking
zeroth cohomology of all the morphism complexes. This is called the homotopy
category of C.
Example 4.2. Any K-linear category is a dg category C where the morphism
complex is concentrated in degree zero. In this case H0(C) = C.
Example 4.3. A dg algebra A can be viewed as a dg category with a single
object ∗ ∈ C whose endomorphisms are given by C(∗, ∗) = A. In this case H0(C)
is the category with one object ∗ and endomorphism algebra H0(A).

Example 4.4. If A is an algebra (or more generally, a dg algebra), then there
is a dg category Cplx(A) whose objects are complexes of A-modules (resp. dg
modules over A). Give a pair of complexes (M,dM) and (N ,dN ), the complex
of morphisms Hom•Cplx(A)(M, N) has degree-n piece given by

Homn
Cplx(A)(M,N ) =

∞∏
i=−∞

HomA(Mi,N i+n)

the space of degree-n maps of graded A-modules. The differential is given by
df = dN f−(−1)nfdM where f ∈ Homn

Cplx(A)(M,N ). Note that the degree zero
cocycles are precisely the cochain maps, and the degree-zero coboundaries are
the null-homotopic cochain maps. Hence H0(Cplx(A)) is the homotopy category
of complexes of A-modules.
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Example 4.5. The category of perfect complexes of A-modules is the full
subcategory

Perf(A) ⊂ Cplx(A)

consisting of complexes that are quasi-isomorphic to a bounded complex of
projective A-modules of finite rank.

Example 4.6. Let X be a quasi-compact quasi-separated scheme (we need this
technical condition to ensure that QCoh(X) is Grothendieck abelian, i.e. a cat-
egory we can do homological algebra with). Then there are dg categories

Perf(X) ⊂ Cohdg(X) ⊂ QCohdg(X)

whose homotopy categories are the bounded derived categories

DbPerf(X) ⊂ DbCoh(X) ⊂ DbQCoh(X)

of perfect/coherent/quasicoherent sheaves on X. The construction of these dg
categories is slightly subtle because QCoh(X) does not have enough projectives.
One approach is to use take the subcategory of the dg category of chain com-
plexes in QCoh(X), consisting of complexes that are injective as OX-modules and
locally quasi-isomorphic to perfect/coherent/quasi-coherent complexes.

It is straightforward to extend the definition of Hochschild homology to
arbitrary (small) dg categories (c.f. [2], Section 5.3). Indeed, suppose that C is
a dg category. Then we may define a double complex

· · · b //⊕
M0,M1∈C C(M0,M1)⊗ C(M1,M0)

b //⊕
M0∈C C(M0,M0)

where the nth column is given by the space⊕
M0,M1,...,Mn∈C

C(M0,M1)⊗ C(M1,M2)⊗ · · · ⊗ C(Mn,M0)

formed from morphisms in C that compose in a cycle:

M0

M1M2

M3

... Mn

The horizontal differential is given by

b(f0 ⊗ · · · ⊗ fn) =

n−1∑
i=0

(−1)i+|fi||fi+1|f0 ⊗ · · · ⊗ (fi+1 ◦ fi)⊗ · · · ⊗ fn

+ (−1)|fn|(|fn−1|+···+|f0|)fn ◦ f0 ⊗ · · · ⊗ fn−1.
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and the vertical differential is the usual one on the tensor product. Denoting
by C•(C) the direct sum total complex of this double complex, the Hochschild
homology of C is the cohomology HH•(C) := H•(C•(C),b). It’s not hard to see
that if C is a dga, then this agrees with the Hochschild homology defined earlier.

References

[1] D. Eisenbud, Commutative algebra with a view toward algebraic geometry,
Graduate Texts in Mathematics, vol. 150, Springer-Verlag, 1995.

[2] B. Keller, On differential graded categories, International Congress of Math-
ematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190.
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