Noncommutative Deformations & Surface Autoequivalences

Matt Booth

The University of Edinburgh

Flops and Derived Categories

Flops are a special type of codimension two surgery: birational maps that are isomorphisms in codimension one. The definition involves a diagram [1] with the π^{\pm} small contractions – often π^{-} is given and we wish to construct ϕ . A threefold flop essentially modifies curves in X^- .

Example: The Atiyah Flop

Y is the cone $\frac{k[u,v,x,y]}{(uv-xy)}$. Blow up the cone point; the exceptional divisor is $\mathbb{P}^1 \times \mathbb{P}^1$. Contract the first \mathbb{P}^1 to get X^- and the second to get X^+ .

models are connected by a sequence of flops. If X is a variety, the derived category

 $\begin{array}{c} \pi^{-} & \pi^{+} \\ \mu & \mu \\$ Figure 1: A flop ϕ .

 $X^- \xrightarrow{\phi} X^+$

Deformation Theory

Deformation theory is the study of infinitesimal deformations. The infinitesimals are the local Artinian k-algebras with residue field k, e.g. the **dual numbers** $k[\varepsilon] = k[x]/x^2$. A deformation of a scheme X over such a ring Γ is a flat map $\mathcal{X} \to \operatorname{Spec}(\Gamma)$ that pulls back along $\Gamma \to k$ to $X \to \operatorname{Spec}(k)$.

Flops are important in the Minimal Model Program: a theorem of Kawamata says that any two minimal

 $D(X) := D^{b}(Coh(X))$ knows a lot about the birational geometry of X: for example, Bridgeland proved

that a flop $X \to X^+$ between smooth projective threefolds induces an equivalence $D(X) \to D(X^+)$.

Can one use homological methods to study threefold flops? One invariant of flopping curves, the

contraction algebra, has been defined by Donovan-Wemyss using noncommutative deformation

theory. It subsumes many other invariants, and is conjectured to classify threefold flops completely.

First-order deformations of a plane curve

If $f \in k[x, y]$, then the set of deformations of $\{f = 0\}$ over $k[\varepsilon]$ is $\frac{k[x, y]}{(f, f_x, f_y)}$. For example, picking $\{xy = 0\}$, we get $\frac{k[x,y]}{(xy,y,x)} \cong k$; every deformation is of the form $xy = t\varepsilon$. One can think of this as the 'first-order part' of the family Spec $\frac{k[x,y,t]}{(xy-t)} \rightarrow \text{Spec } k[t]$ pictured in [2].

Given a scheme X, its **deformation functor** $Def_X : Art \to Set$ sends Γ to the isoclasses of deformations of X over Γ . It's often (pro)representable, by a local Noetherian k-algebra (e.g. a power series ring). One can do noncommutative or derived deformation theory by modifying the definition of 'infinitesimal': just use noncommutative or dg Artinian algebras. If A is a k-algebra and S is a one-dimensional simple A-module, then the noncommutative derived deformation functor Def_{S} has prorepresenting object the double Koszul dual $\mathbb{R}\text{End}_{\mathbb{R}\text{End}_{A}(S)}(k)$.

Figure 2: A family over \mathbb{A}^1 (black line).

www.maths.ed.ac.uk/~mbooth

The Contraction Algebra

Fix a contraction $f: X \to X_{con}$ of not-too-singular threefolds, and pick an irreducible curve $C \cong \mathbb{P}^1$ in the exceptional locus. Does C flop? Using perverse sheaves, Van den Bergh constructs a bundle \mathcal{V} on X and a derived equivalence $D(X) \to D(A)$, where $A = \text{End}_X(\mathcal{V})$. Under this equivalence, $\mathcal{O}_C(-1)$ goes to a simple module S, and the contraction algebra A_{con} is the prorepresenting object for the noncommutative deformation functor Def_{S} . Importantly, C flops if and only if $\dim_{k}(A_{con}) < \infty$.

Examples

The Atiyah flop has contraction algebra k; more generally the Pagoda flop with base $\frac{k[u,v,x,y]}{(uv-(x+y^n)(x-y^n))}$ has contraction algebra $k[t]/t^n$. But A_{con} need not be commutative!

There's a canonical algebra map $g: A \rightarrow A_{con}$; the **noncommutative twist around** A_{con} is the functor $T = \mathbb{R}$ Hom_A(ker(g), -). It's an autoequivalence, and if C flops it's the **mutation-mutation autoequivalence** MM. Loosely, one mutates A by perturbing V to obtain a new ring $B := \text{End}_X(\mu V)$ and a derived equivalence $D(A) \rightarrow D(B)$. Mutation is an involution, so mutating again gives an autoequivalence MM of D(A). Wemyss's Homological MMP says that mutations correspond exactly to flops between minimal models: indeed, T globalises to give an autoequivalence of D(X) that's isomorphic to the (inverse of the) Bridgeland-Chen flop-flop functor $D(X) \rightarrow D(X^+) \rightarrow D(X)$.

A Surface Example

Let's return to the Atiyah flop: cut a 1-curve resolution $ilde{Y} o Y$ along $x = y^n$ to obtain a partial resolution $X \to \operatorname{Spec} \frac{k[u, v, y]}{(uv - y^{n+1})}$ of an A_n singularity. Do Donovan and Wemyss's methods give an autoequivalence of X? The resolution \tilde{Y} is derived equivalent to the algebra \tilde{A} with

quiver presentation [3], and across the equivalence the curve corresponds to S_2 , the simple at 2. Cutting yields an algebra A with the same quiver,

but where the last two relations are replaced by $at = (sb)^n$ and $ta = (bs)^n$. One can compute $A_{con} = k$, so $A_{\rm con}$ does not contain much information about surface singularities! What if we consider the derived contraction algebra $A_{\text{con}}^{\text{der}} = \mathbb{R}\text{End}_{\mathbb{R}\text{End}_A(S_2)}(k)$?

One can identify A_{con}^{der} as an A_{∞} -algebra: it has two generators ζ and η in degrees -1, -2 respectively, and only one higher bracket in level n + 1. In fact, it's an algebra over the subalgebra $k[\eta]$, essentially because *MM* shifts the simple S_2 by 2; η is obtained from the unit id \rightarrow *MM*. Truncating A_{con}^{der} by applying $-\otimes_{k[\eta]}^{\mathbb{L}} k$ recovers the two-term dga defining the mutation-mutation autoequivalence MM; in particular it's not just A_{con} . One can view the noncommutative twist around A_{con}^{der} as the infinite composition MM^{∞} , since A_{con}^{der} is the derived completion \hat{A}_{S_2} . The same analysis works for threefolds: currently I'm thinking about A_{con}^{der} for Pagoda flops. For the Atiyah flop, it's simply $k[\eta]$.