The derived contraction algebra Matt Booth The University of Edinburgh

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Birational geometry and derived noncommutative geometry

- Threefold flopping contraction X → Spec R over C. ∃ a flop X --→ X⁺ over R. MMP: flops link minimal models.
- Bridgeland, Chen: $X \dashrightarrow X^+$ induces $D^b(X) \xrightarrow{\simeq} D^b(X^+)$.
- Van den Bergh: $\exists A = \operatorname{End}_R(R \oplus M)$ with $D^b(X) \xrightarrow{\simeq} D^b(A)$. Flop equivalences \rightsquigarrow derived Morita equivalences $A \to A^+$.
- $X^{++} \cong X$ induces a **nontrivial** $FF : D^b(X) \xrightarrow{\simeq} D^b(X)$.
- C_i flopping curves. VdB's equivalence sends $\mathcal{O}_{C_i}(-1) \mapsto S_i$ 1-dimensional simple A-modules, with $FF(S_i) \cong S_i[-2]$.

The contraction algebra

- Donovan-Wemyss: A_{con} := <u>End</u>_R(M) ≅ A/AeA with e = id_R. It's NC Artinian m-pointed (m = #flopping curves).
- e.g. Pagoda flop with base uv − (x + y^k)(x − y^k) = 0 and 1 curve above singular point has A_{con} ≅ C[ξ]/ξ^k.
- A_{con} represents the pointed NC deformation theory of the S_i : $\operatorname{Def}(\{S_i\}_i) \cong \operatorname{Hom}_{\operatorname{Art}_{\mathbb{C}^m}}(A_{\operatorname{con}}, -).$
- $FF \cong \mathbb{R} \operatorname{Hom}_A(\operatorname{ker}(A \to A_{\operatorname{con}}), -)$. So A_{con} also controls FF.
- $A_{\rm con}$ recovers all known invariants of flops. Conjecture: $A_{\rm con}$ classifies Spec *R* complete locally.

Surfaces

- Cut X → Spec R along a generic hyperplane g ∈ R to get X' → Spec(R/g) partial resolution of ADE surface singularity.
- e.g. cut Atiyah flop (Pagoda k = 1) along u = vⁿ to get a 1-curve partial resolution of an A_n singularity zw - vⁿ⁺¹ = 0.
- Can still define A_{con}; in the A_n example A_{con} ≅ C independent of n. So D-W conjecture fails.
- In the example, *FF* is represented by a 2-term complex. So A_{con} does not control *FF* for surfaces.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- A^{der}_{con} := A/[⊥]AeA (construction of Braun-Chuang-Lazarev). Nonpositive (cohom. graded) DGA with H⁰(A^{der}_{con}) ≅ A_{con}.
- derived NC defm theory: $\mathrm{Def}^{\mathrm{fr}}(S) \cong \mathrm{Hom}_{\mathrm{pro}(\mathrm{dgArt}_{\mathbb{C}})}(\mathcal{A}_{\mathrm{con}}^{\mathrm{der}}, -)$. Lets us do explicit computations via Koszul duality.
- A_{con}^{der} recovers $\langle M \rangle \subseteq D_{sg}^{dg}(R)$, the DG singularity category. $D_{sg}^{dg}(R)$ recovers R: derived D-W conj. holds if M generates.
- *R* is a hypersurface: Eisenbud \implies 2-periodicity in $D_{sg}^{dg}(R)$. Get a periodicity element $\eta \in A_{con}^{der}$ of degree -2. Conjecture: A_{con}^{der}/η controls *FF*. True for 3folds and the A_n example.
- A_n example: $A_{\text{con}}^{\text{der}} \cong \mathbb{C}[\eta] \langle \zeta \rangle$ with $|\zeta| = -1$, $m_{n+1}(\zeta^{n+1}) = \eta^n$. Pagoda: $A_{\text{con}}^{\text{der}} \cong \frac{\mathbb{C}[\xi]}{\xi^k}[\eta]$ with $|\xi| = 0$ and higher m_{2r} .