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A note on notation I try to denote usual categories with italic letters, and
higher categories (2-categories, (∞, n)-categories, etc.) with calligraphic letters.

1 Extending Cob(n)
1.1 Extending down
We’ve seen that the cobordism categoriesCob(n) should really have more struc-
ture than just categories. In particular we should have, for every integer k ≤ n,

1



a k-category1 Cobk(n) with

objects←→ closed oriented (n− k)-manifolds
1-morphisms←→ oriented cobordisms
2-morphisms←→ cobordisms between cobordisms

...
k-morphisms←→ (diffeomorphism classes of) n-manifolds with corners

We’d like to have a nice definition of k-category that includesCobk(n). Here’s
an obvious definition to make:

Definition 1.1.1. A strict 1-category is a category. A strict k-category is
defined inductively as a category enriched over strict (k − 1)-categories.

This definition is not the correct one. In particular Cobk(n) is not a strict
k-category since composition is not strictly associative, only associative up to
isomorphism. We could adjust the definition of Cobk(n) so that composition
does become strictly associative, but this quickly gets messy.

Moral 1.1.2. We’re going to need a better notion of k-category, where compo-
sition need only be associative up to isomorphism.

1.2 Extending up
Let’s suppose we have a good definition of what a k-category is. Then we can
define a (k, n)-category to be a k-category where all of the i-morphisms are in-
vertible for n < i ≤ k.

Example 1.2.1. A (1, 0)-category should just be a groupoid.

It’s also often useful to allow k = ∞; in fact we’re going to define (∞, n)-
categories later. This gives us a definition of (k, n)-categories simply by ignoring
the morphisms above level k.

Example 1.2.2. An (∞, 0)-category is an ∞-groupoid. Given a topological
space X, we can form an ∞-groupoid π≤∞(X) called the fundamental ∞-

1In this section we’ll treat higher categories at an informal level. Note that the concept of
a “k-category” has not been defined!
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groupoid of X, with

objects←→ points of X
1-morphisms←→ paths between points
2-morphisms←→ homotopies between paths
3-morphisms←→ homotopies between homotopies

...

The fundamental groupoid ofX remembers all ofX up to weak homotopy equiv-
alence. More formally, the fundamental groupoid construction is an equivalence
between topological spaces (up to weak homotopy equivalence) and∞-groupoids
(up to equivalence). This assertion is known as the homotopy hypothesis2.
This allows us to think of (∞, 0)-categories as really being topological spaces.
So as well as generalising category theory, higher category theory should also
generalise topology.

Recall that in defining Cob(n), we defined a morphism M → N to be a
diffeomorphism class of (oriented) cobordisms M → N . Instead of considering
two diffeomorphic cobordisms to be the same map, we could say that they differ
by an invertible 2-morphism. Hence we should have an (∞, 1)-category Cobt(n)
with

objects←→ closed oriented (n− 1)-manifolds
1-morphisms←→ oriented cobordisms
2-morphisms←→ diffeomorphisms between cobordisms
3-morphisms←→ isotopies between diffeomorphisms

...

Note that this definition allows us to keep track of the diffeomorphism groups
of our cobordisms.

We can combine our two higher-categorical versions of Cob(n) into a single
(∞, n)-category Bordnwith

2This is not a theorem yet, since we don’t have a definition of∞-groupoid. We could either
define an∞-groupoid to be a topological space, or we could regard the homotopy hypothesis
as being a condition that our models of higher categories need to satisfy.
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objects←→ 0-manifolds
1-morphisms←→ cobordisms between 0-manifolds
2-morphisms←→ cobordisms between cobordisms

...
n-morphisms←→ n-manifolds with corners

(n+ 1)-morphisms←→ diffeomorphisms
(n+ 2)-morphisms←→ isotopies between diffeomorphisms

...

Moral 1.2.3. We’re going to need a good definition of (∞, n)-categories. Note
that the disjoint union operation on 0-manifolds should turn Bordninto a sym-
metric monoidal (∞, n)-category.

1.3 Intuitive statement of the cobordism hypothesis
The cobordism hypothesis is stated in terms of framed cobordisms. This is
a technical point and won’t really concern us. Denote the (∞, n)-category of
framed cobordisms by Bordfr

n .

If C is a symmetric monoidal (∞, n)-category then consider the category of
C-valued fully extended framed TFTs: we can identify this category with the
category Fun⊗(Bordfr

n , C) of symmetric monoidal functors from Bordfr
n to C.

The cobordism hypothesis more or less says that the evaluation functor
Z 7→ Z(∗) determines a bijection between isomorphism classes of C-valued fully
extended framed TFTs and isomorphism classes of objects in C satisfying suit-
able finiteness conditions.3

Remark 1.3.1. This specialises to a statement about Cob(n) by taking homo-
topy n-categories.

2 (∞, 1)-categories as complete Segal spaces
We’ll first define (∞, 1)-categories and then soup up our definition in § 3 to get
to (∞, n)-categories.

3By ’suitable finiteness conditions’ we mean full dualisability, which we’ll see a definition
of in § 5. InVectk the fully dualisable objects are exactly the finite-dimensional vector spaces.
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Intuitively, an (∞, 1)-category should be a topological category; one where
the hom-sets have the structure of topological spaces.4 Higher morphisms are
homotopies, homotopies between homotopies, and so on. However, while intu-
itive, this definition is very difficult to work with.

There are several other models5 but we’re going to use complete Segal
spaces as our models for (∞, 1)-categories since they generalise easily to (∞, n)-
categories.

2.1 Preliminary: simplicial sets
Definition 2.1.1. The simplex category ∆ has objects [n] = {0, 1, . . . , n}
and morphisms the weakly order-preserving maps.

It looks like

0 1 2

...

where we’ve omitted the maps from [2] to [1]. The maps going to the right
are the face maps and the maps going to the left are the degeneracy maps.

Definition 2.1.2. A simplicial object in a category C is a functor ∆op → C.
More concretely a simplicial object is a collection of objects Xn indexed by the
positive integers together with various face and degeneracy maps.

Definition 2.1.3. A morphism between two simplicial objects F : ∆op → C
and G : ∆op → C is a natural transformation F → G. Concretely, a morphism
of simplicial objects is a collection of maps Xn → Yn commuting with the face
and degeneracy maps.

Proposition 2.1.4. The collection of simplicial objects in a category C and
their morphisms itself forms a category, which we denote sC.

A simplicial object X• looks like

X0 X1 X2 · · ·
4One way to think about this is that an (∞, 1)-category should be enriched in (∞, 0)-

categories, which are the same thing as topological spaces.
5A good account of these are given in [8].
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We’ll be interested in simplicial sets; simplicial objects in Set.6 Later we’ll
be interested in simplicial topological spaces.
Example 2.1.5. Given a topological space X, we can define (functorially) a
simplicial set Sing(X) that at level n is the set Hom(∆n, X) of maps from
the n-simplex ∆n ⊆ Rn+1 to X. We also have a geometric realisation functor
| · | : sSet → Top and in fact |Sing(X)| is weakly homotopy equivalent to X.
Simplicial sets are good combinatorial models of topological spaces.7

Example 2.1.6. Given a category C, the nerve is a simplicial set N(C) which
at level n consists of the strings C0

f1−→ C2
f2−→ · · · fn−→ Cn of n composable

morphisms. It’s possible to recover C up to isomorphism from its nerve N(C).

We might wonder what simplicial sets are the nerves of categories.

Proposition 2.1.7 (the Nerve Theorem). A simplicial set X is isomorphic to
the nerve of a category if and only if for all m,n ≥ 0 the diagram

Xm+n Xm

Xn X0

induced by the maps

0 < 1 < · · · < m 0 < 1 < · · · < m

m < m+ 1 < · · · < m+ n [m+ n] [m] m

0 < 1 < · · · < n [n] [0] 0

0 0

is Cartesian (i.e. a pullback diagram).

Whenever this diagram appears, we will fix the convention that the maps
featuring are the maps described above.

2.2 Homotopy theory
Our philosophy is that (∞, 1)-category theory should be category theory, but

done in a homotopy-theoretic manner. This is because an (∞, 1)-category is just
a topological category where the higher morphisms are given by homotopies.

6A simplicial set is the same thing as a presheaf on ∆.
7Technically sSet and Top are Quillen equivalent (via these two functors), so they have

the same homotopy theory.
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Since Proposition 2.1.7 tells us that we can recover a category from its nerve,
we’ll try to code up the concept of a nerve in homotopy theory. We’ll see that
a Segal space is precisely this concept of ‘homotopy nerve’. However we’ll see
that a Segal space alone won’t quite be enough to recover an (∞, 1)-category:
we’ll need some more conditions.

Definition 2.2.1. Let X f−→ Z
g←− Y be a diagram of topological spaces8 and

continuous maps. The homotopy fibre product X ×hZ Y of X and Y along
f and g is the space X ×Z Z [0,1] ×Z Y whose points are triples (x, y, p) with
x ∈ X, y ∈ Y and p : [0, 1]→ Z a path in Z from f(x) to g(y).

Remark 2.2.2. There is a canonical map from X ×Z Y to X ×hZ Y given by
(x, y) 7→ (x, y, p) where p is the constant path from f(x) = g(y) to itself.
Example 2.2.3. Let X be a space and p : ∗ → X be the inclusion of a basepoint.
Then the homotopy fibre product of ∗ p−→ X

p←− ∗ is the space ΩX of loops in X
based at p. The usual fibre product is the one point space ∗.

Example 2.2.4. The homotopy fibre product of ∗ p−→ Y
f←− X is the homotopy

fibre of f over the basepoint p in Y .
The usual fibre product of topological spaces does not respect homotopy

equivalences. The homotopy fibre product is invariant under homotopy equiva-
lence: if we replace f and g by homotopic maps then the weak homotopy type
of X ×hZ Y does not change.
Remark 2.2.5. Another nice property of the homotopy fibre product is that we
have a long exact sequence of homotopy groups

· · · → πn(X ×hZ Y )→ πn(X)× πn(Y )→ πn(Z)→ · · · → π0(X)× π0(Y )

Proposition 2.2.6. The homotopy fibre product X×hZY comes with two canon-
ical projection maps to X and Y making the diagram

X ×hZ Y Y

X Z

commute up to canonical homotopy. Moreover if the square

W Y

X Z

is homotopy commutative then there is a unique up to homotopy map W →
X×hZ Y making the two triangles obtained strictly commutative. For this reason
we often call X ×hZ Y the homotopy pullback of X and Y along f and g.

8For technical reasons we need to work with a ‘convenient category’ of spaces. For example
we can use CGH (compactly generated Hausdorff) spaces as in [5] or CGWH (compactly gen-
erated weak Hausdorff) spaces as in [6]. For concreteness we may suppose that all topological
spaces are CGWH.
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Definition 2.2.7. A homotopy commutative square

W Y

X Z

is homotopy Cartesian (or just h-Cartesian) if there is a weak homotopy
equivalence W → X ×hZ Y such that the triangles obtained are strictly commu-
tative.

Neither

h-Cartesian =⇒ Cartesian

nor

Cartesian =⇒ h-Cartesian

is true in general! If our maps are sufficiently nice (e.g. if X → Z is a fibration)
then a Cartesian square is homotopy Cartesian. In this situation we can compute
the homotopy fibre product by computing the usual fibre product.

2.3 Segal spaces
Definition 2.3.1 (Rezk). A simplicial topological space X• is a Segal space
if for all m,n ≥ 0 the diagram

Xm+n Xm

Xn X0

is h-Cartesian. We can equivalently specify that for all n the Segal maps

Xn → X1 ×hX0
X1 ×hX0

· · · ×hX0
X1︸ ︷︷ ︸

n

are weak homotopy equivalences.

Remark 2.3.2. This is not a universally accepted definition. Some authors, for
example [2], specify in addition that X• should be Reedy fibrant, a ‘nice-
ness’ condition on simplicial spaces that ensures that the homotopy pullback
Xm ×hX0

Xn is the usual pullback Xm ×X0 Xn. In this case it’s enough to
demand that Xm+n → Xm ×X0 Xn is a weak homotopy equivalence. Reedy fi-
brancy is a technical condition that can always be satisfied. For more on model
category theory and the definition of Reedy fibrancy, the reader can consult e.g.
Appendix A.2 of [7].
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What do Segal spaces have to do with (∞, 1)-categories? Let’s suppose for
the moment that we already have a good theory of (∞, 1)-categories. Just
like a 1-category has an underlying groupoid, obtained by throwing away all
of the noninvertible morphisms, an (∞, 1)-category should have an underlying
∞-groupoid obtained in the same way:
Idea 2.3.3. Let C be any (∞, 1)-category. We can loosely define the underlying
∞-groupoid of C, which I will denote π≤∞(C), to be the ∞-groupoid with

objects←→ objects of C
1-morphisms←→ invertible 1-morphisms in C
2-morphisms←→ 2-morphisms between invertible 1-morphisms of C

...

Since we can identify ∞-groupoids with topological spaces, we may think of
π≤∞(C) as a topological space B0C which we refer to as the classifying space
for objects of C. Note that by definition the fundamental ∞-groupoid of B0C
is the underlying ∞-groupoid of C.

Clearly B0C should not in general encode all of the information about C. For
example it doesn’t know about noninvertible morphisms or how composition
works. We can extend the above definition to get classifying spaces for n-
morphisms of C (since we can think of an object as a 0-morphism), and hopefully
this collection of classifying spaces should allow us to recover C.
Idea 2.3.4. Let [n] be the 1-category associated to the ordered set {0, 1, 2 . . . , n}.
Let C be an (∞, 1)-category. We can think of an n-morphism in C as a func-
tor [n] → C. The collection Fun([n], C) of functors [n] → C itself naturally
has the structure of an (∞, 1)-category, so it has an underlying ∞-groupoid
π≤∞(Fun([n], C)). Let BnC be the topological space associated to this ∞-
groupoid. We call BnC the classifying space for n-morphisms in C. Again,
by definition the fundamental∞-groupoid of BnC is the underlying∞-groupoid
of Fun([n], C).

What kind of object should the collection B•C be? Moreover, to what extent
does it determine C? The answer to the first question is that B•C should be
a simplicial space, and moreover a Segal space. The Segal conditions formalise
the idea that giving a chain

A0 → A1 → · · · → An+m

of composable morphisms should be equivalent to giving two chains

A0 → · · · → An An → · · · → An+m

and moreover that it should not matter where we break the chains. To answer
the second question, we can try to define an ‘inverse’ to the operation C → B•C
and see if we need to add any extra data to a general Segal space in order to
extract an ∞-category.
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Idea 2.3.5. Given a Segal space X• we should be able to construct an (∞, 1)-
category C(X•) which has

objects←→ points of X0

Mapping spaces Map(x, y)←→ {x} ×hX0
X1 ×hx0

{y}
composition law←→ given by X2

higher associativity information←→ given by X3,X4. . .

Observe that the connected components of the space Map(x, y) should be
precisely the homotopy classes of 1-morphisms in C(X•). With this in mind, we
can construct a 1-category from a Segal space:

Definition 2.3.6. The homotopy category hX• of a Segal space X• is the
category whose objects are the points of X0, and whose homsets are

HomhX•(x, y) : = π0(Map(x, y))
= π0({x} ×hX0

X1 ×hx0
{y})

Remark 2.3.7. The homotopy category of X• records some of the basic infor-
mation about C(X•) - it knows what the objects should be, for example - but
it forgets all of the homotopical information by identifying all homotopic maps.
It can be thought of as a 1-categorical ‘flattening’ of the (∞, 1)-category C(X•).

2.4 Completeness
If we start with a general Segal space X•, how does it compare to the Segal

space Y• := B•(C(X•))? The fundamental groupoid of Y0 is the classifying
space for 0-morphisms of C(X•). This receives a map from the fundamental
groupoid of X0 but this map is not necessarily an equivalence, since there may
be invertible 1-morphisms in C(X•) which do not come from paths in X0. We’d
like to impose an extra condition on our Segal spaces which ensures that every
invertible 1-morphism in C(X•) comes from an essentially unique path in X0.

Definition 2.4.1. Let pi be the map from [0] to [1] given by 0 7→ i. For any
Segal space X• write p∗i : X1 → X0 for the map induced by pi. If f ∈ X1 then
write x := p∗0(f) and y := p∗1(f) so that we can think of f as a path from x to
y. The map {f} → {x} ×X0 X1 ×x0 {y} → {x} ×hX0

X1 ×hx0
{y} determines an

element [f ] of HomhX•(x, y) = π0({x}×hX0
X1×hx0

{y}). Say that f is invertible
if [f ] is an isomorphism.

Example 2.4.2. If X• is a Segal space let δ : X0 → X1 be the map induced by
the unique map [1]→ [0]. Then for every x ∈ X0, the map [δ(x)] is the identity
map idx in the homotopy category. So δ(x) is invertible for every x.

Definition 2.4.3. If Z ⊆ X1 is the subspace of invertible elements of a Segal
space X•, then say that X• is complete if δ : X0 → Z is a weak homotopy
equivalence.
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So a complete Segal space is one where every isomorphism in C(X•)arises
from an essentially unique path in X0. In fact, if X• is complete then we should
have an equivalence X• ∼= B•(C(X•)).
Remark 2.4.4. If one is more careful and starts with a rigorous axiomatisation
of (∞, 1)-categories then the above assertions and intuitive ideas can be turned
into theorems. This was done by Toën in [9].

We’ve seen that the well-defined theory of complete Segal spaces should cor-
respond to the as-yet-undefined theory of (∞, 1)-categories. With this in mind,
we make the following rather bold definition:

Definition 2.4.5. An (∞, 1)-category is a complete Segal space.

Proposition 2.4.6 (Rezk). Any Segal space X• has a completion; i.e. admits
a homotopy universal morphism9 X• → Y• where Y• is complete. In general Y•
is unique up to homotopy and we refer to it as the completion of X•, denoted
X̂•. The map X• → X̂• is functorial.

Remark 2.4.7. Complete Segal spaces are the fibrant objects of a suitable model
structure on the category of simplicial spaces, just as quasicategories are the
fibrant objects of the Joyal model structure on the category of simplicial sets.

3 (∞, n)-categories as n-fold complete Segal spaces
Now we have a definition of (∞, 1)-category as a certain functor ∆op → Top,

we’re going to generalise this and define an (∞, n)-category as a certain functor
(∆op)×n → Top.

Definition 3.1.1. An n-fold simplicial object in a category C is a functor

∆op ×∆op × · · · ×∆op︸ ︷︷ ︸
n

→ C

Example 3.1.2. A 0-fold simplicial object is an object. A 1-fold simplicial object
is just a simplicial object in the usual sense.

In general an n-fold simplicial object in a category C is a collection Xi1···in of
objects of C indexed by n-tuples of nonnegative integers i = (i1, . . . , in) along
with a collection of face and degeneracy maps. We’ll always use an underbar
to denote multiindices in this manner. We think of n-fold simplicial objects as
having n ‘directions’ in which to compose.

Definition 3.1.3. An n-fold simplicial space is an n-fold simplicial object
in the category Top.

9A morphism of Segal spaces is a morphism of the underlying simplicial spaces.
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Definition 3.1.4. A map X → Y of n-fold simplicial spaces is a weak homo-
topy equivalence if all of the maps Xi → Yi are weak homotopy equivalences.

Definition 3.1.5. A diagram

W Y

X Z

of n-fold simplicial spaces is homotopy Cartesian if for all multiindices i the
square

Wi Yi

Xi Zi

is homotopy Cartesian.

Definition 3.1.6. An n-fold simplicial space X is essentially constant if it’s
weakly homotopy equivalent to a constant n-fold simplicial space.

Via currying, whenever n > 0 we can always think of an n-fold simplicial
object in C as a simplicial object in the category of (n − 1)-fold simplicial
objects in C. This idea will form the basis of our inductive definition of an
n-fold complete Segal space.

Definition 3.1.7. For n > 0 an n-fold simplicial space X, thought of as a
simplicial object in the category of (n − 1)-fold simplicial spaces, is said to be
an n-fold Segal space if the following conditions are met:

i) Every Xk is an (n− 1)-fold Segal space.

ii) For all m and l the diagram

Xm+l Xm

Xl X0

is a homotopy Cartesian square of (n− 1)-fold simplicial spaces.

iii) X0 is an essentially constant (n− 1)-fold simplicial space.

Moreover, we say that an n-fold Segal space is complete if

iv) Each Xk is a complete (n− 1)-fold Segal space.

v) The Segal space Y• = X•,0,0,...,0 is complete.

Definition 3.1.8. An (∞, n)-category is a complete n-fold Segal space.

Proposition 3.1.9. Any n-fold Segal space has a completion.
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Loosely, an n-fold complete Segal space is a ‘fattened’ or ‘spread out’ version
of an (∞, n)-category. Some illuminating diagrams are given in §2.2.1 of [2].

4 The (∞, n)-category Bordn
In this section we’ll code up our ideas about Bordn to define an n-fold simplicial
space PBordn. We’ll indicate how this is an n-fold Segal space that in general
is not complete. Then we can define the (∞, n)-category Bordn to be the
completion ̂PBordn of PBordn. Our exposition will be fairly informal; for a
more rigorous explanation see §2 of [2].

4.1 The level sets
(
PBordV

n

)
k

We want to think of (PBordn)(k1,...,kn) as a collection of k1k2 · · · kn composed
cobordisms, with ki cobordisms in the ith direction.
Idea 4.1.1. Cobordisms are easier to deal with when we consider them as sub-
manifolds of some large Rm. So we’ll define sets of cobordisms living in Rm for
varying m, and then take a limit over m. Whitney’s embedding theorem will
ensure that we get all of the cobordisms, since every l-dimensional manifold can
be embedded in R2l.

Definition 4.1.2. Let V be a finite-dimensional real vector space and fix a
multiindex k = (k1, . . . , kn). Define

(
PBordVn

)
k
to be the set of tuples

(M, (ti0, . . . , tiki
)i=1...n)

satisfying the following:

i) For each 1 ≤ i ≤ n, ti0 ≤ · · · ≤ tiki
is an ordered tuple of ki + 1 real

numbers.

ii) M is a closed n-dimensional submanifold of V × Rn and the composition
π : M ↪→ V × Rn � Rn is proper10.

iii) For a subset S of {1, . . . , n} let pS : M → RS denote the composition
M

π−→ Rn � RS . Then we require that for every 1 ≤ i ≤ n and every
0 ≤ j ≤ ki, that for all x ∈ p−1

{i}
(
tij
)
, the map p{i,...,n} is submersive11 at

x.

Remark 4.1.3. What’s the motivation behind this definition? If we want to
think ofM as being a collection of composed cobordisms, the numbers tij record
the ‘cutting points’ where we glue two cobordisms together. So the region of M
between the hyperplanes corresponding to tij and tij+1 should be the (j + 1)st

cobordism glued in the ith direction.
10A map is proper if preimages of compact sets are compact.
11A map f : M → N is submersive at m ∈ M if the differential dfx : TxM → TxN is

surjective. A map is submersive if it’s submersive at every point of its domain.
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Condition iii) says that in particular the set p−1
{n}
(
tnj
)
is an (n−1)-dimensional

submanifold that we can think of as one of the (n− 1)-cobordisms that we glue
together to get M .

Furthermore the set p−1
{n−1,n}

{
tn−1
jn−1

, tnjn

}
is an (n− 2)-dimensional manifold

that is one of the (n− 2)-cobordisms joined by an (n− 1)-cobordism. Similarly,
the preimage p−1

{m,...,n}
{
tmjm

, . . . , tnjn

}
is an (m − 1)-dimensional manifold that

we can loosely think of as one of our (m− 1)-morphisms.
Example 4.1.4. Here is an element of PBordR

1 :

The cutting points indicated by the dotted lines allow us to view this as a
composition of the three 1-cobordisms

, and

4.2 The topological spaces
(
PBordV

n

)
k

Fact 4.2.1 ([10], Chapter II). The set Emb(X,Y ) of smooth embeddings of a
smooth manifold X into a smooth manifold Y has a topology, the Whitney
C∞ topology.

Theorem 4.2.2 ([11]). The space Sub(V × Rn) of closed n-dimensional sub-
manifolds of V × Rn can be identified with the space⊔

[L]

Emb(L, V × Rn)/Diff(L)
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where the disjoint union is taken over diffeomorphism classes of n-dimensional
manifolds L. Moreover the topology on Sub(V ×Rn) has neighbourhood basis at
M ⊆ V × Rn the sets

{N ⊆ V × Rn : N ∩K = f(M) ∩K for all f ∈W}

where K is a compact subset of V ×Rn and W ⊆ Emb(M,V ×Rn) is a neigh-
bourhood (in the Whitney C∞ topology) of the inclusion M ↪→ V × Rn.

Remark 4.2.3. The space Sub(V × Rn) is sometimes denoted by Ψ(V × Rn).

Since we can view
(
PBordVn

)
k
as a subset of Sub(V × Rn) × Rk, for some

k ∈ N depending only on k, we can give
(
PBordVn

)
k
the subspace topology.

4.3 The n-fold simplicial space PBordn

Proposition 4.3.1. There are face and degeneracy maps making the collection
of spaces {(

PBordVn
)
k

: k ∈ Nn
}

into an n-fold simplicial space.

Call this n-fold simplicial space PBordVn . Loosely, the face maps forget a
number tij whereas the degeneracy maps repeat a number tij .

Now we can remove the dependence on the vector space V . Let R∞ be the
unique real vector space of countably infinite dimension. We define the n-fold
simplicial space PBordn to be the limit

PBordn := lim−→
V⊆R∞

PBordVn

4.4 The n-fold Segal spaces PBordn and Bordn

We need to verify that the n-fold simplicial space PBordnis in fact an n-fold
Segal space. The first point is to prove that the Segal map

(PBordn)k1,...,ki+k′
i
,...,kn

(PBordn)k1,...,ki,...,kn
×h

(PBordn)k1,...,0,...,kn

(PBordn)k1,...,k′i,...,kn

is a weak homotopy equivalence; loosely, this is true since one can glue subman-
ifolds along compatible intersections in an appropriate homotopical sense. The
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second point is to prove that the degeneracy maps are weak equivalences. In
fact, they are deformation retracts, essentially because one can homotope the
cut points around. This proves:

Theorem 4.4.1. PBordn is an n-fold Segal space.

The n-fold Segal spacePBordnis not in general complete. We defineBordn :=
̂PBordn to be its completion. Then Bordnis an (∞, n)-category.

Remark 4.4.2. The spaces PBord1 and PBord2 are complete. However, for
n ≥ 6, PBordn is not complete; this is because not all invertible cobordisms
M → N arise from diffeomorphismsM → N . The s-cobordism theorem says
that for n ≥ 6, this statement is equivalent to the vanishing of an invariant of
the cobordism known as the Whitehead torsion. It’s known that for n ≥ 6
that there are n-bordisms which have nontrivial Whitehead torsion, and hence
that PBordnis not complete.

4.5 Extra structure on Bordn

Most importantly, Bordnis a symmetric monoidal (∞, n)-category, which
means that it has a symmetric monoidal structure (given by the disjoint union)
compatible with the (∞, n) structure.

We can also restrict to cobordisms with certain properties: for example there
is an (∞, n)-category Bordfr

n of framed cobordisms, and an (∞, n)-category
Bordor

n of oriented cobordisms. Both of these categories also carry a symmetric
monoidal structure.

The (∞, n)-category Bordfr
n of framed cobordisms will be our focus from now

on, since the Cobordism Hypothesis is stated in terms of framed cobordisms.

Note on the constructions The construction of Bordn outlined above is
similar to Lurie’s definition in [1]. Lurie’s original definition contained an error,
and this was corrected by Calaque and Scheimbauer in [2] (which consists mainly
of material from [3]) who construct their spaces differently.

They first construct a Segal space of intervals in Rn and then lift this Segal
space structure to PBordn. The definitions in [2] correspond roughly to the
definitions here by taking our tij to be points in their intervals.

5 Adjoints and dualisablity
Given a topological field theory Z : Bordfr

n → C, we’d like to classify the kind
of objects of C that could be the image of the 0-manifold ∗ under Z. Such
objects should satisfy some finiteness condition: for example when n = 1 and
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C = Vectk we saw that Z(∗) had to be finite-dimensional, and conversely that
any finite-dimensional vector space can be obtained as the image of ∗ under
some TFT.

The correct analogue of finite-dimensionality in the ∞-categorical setting is
full dualisability, and to define this is the goal of the current section.

It turns out that requiring dualisability for objects is not enough: we’ll also
need a notion of dualisability for k-morphisms as well. In the 2-category Cat
we already have a reasonable notion of dualisability for 1-morphisms: a left dual
(if it exists) for a functor F : C → D should be its left adjoint G : D → C.
We extend this definition to general 2-categories and then to general (∞, n)-
categories. Adjoints and duals are very closely related in higher categories.

All of this section is from [1].

5.1 Duals for objects
Recall the following 1-categorical definition:

Definition 5.1.1. Let C be a monoidal category. Let V be an object of C. A
right dual for V is the data of an object V ∨ and maps

ev : V ⊗ V ∨ → 1 the evaluation map
coev : 1→ V ∨ ⊗ V the coevaluation map

such that the triangles12

V V ∨

V ⊗ V ∨ ⊗ V V V ∨ ⊗ V ⊗ V ∨ V ∨ (1)

idVidV ⊗coev
idV∨coev⊗idV∨

ev⊗idV idV∨ ⊗ev

commute. We also say in this situation that V is a left dual of V ∨.

Remark 5.1.2. If C is symmetric monoidal, then the notions of right dual and
left dual coincide and we refer simply to the dual.
Example 5.1.3. If C is the symmetric monoidal category Vectk (with monoidal
structure given by the usual tensor product over k) then a vector space V has
a dual if and only if it is finite-dimensional. More specifically, we can always
define a space V ∗ = Hom(V, k) and an evaluation map V ⊗k V ∗ → k, but we
can only define a compatible coevaluation map if V is finite-dimensional.

Proposition 5.1.4. Left and right duals (if they exist) are unique up to unique
isomorphism.

12These triangles are usually presented as pentagons; here we have ignored the associators
and the isomorphisms X ⊗ 1 ∼−→ X

∼←− 1⊗X.
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We can easily extend the definition of a dualisable object to higher categories,
by taking the homotopy category.

Definition 5.1.5. Let C be a symmetric monoidal (∞, n)-category. Say that
an object X of C is dualisable if it admits a dual when considered as an object
of the homotopy category hC.

If Z is an oriented or framed topological field theory with target C, then any
object X of C with X = Z(∗) must be dualisable since we can obtain X∨ by
evaluating Z on a point with the opposite orientation to that of ∗. In general
the condition that X be dualisable is not strong enough for such a TFT to exist.
However, for n = 1 it turns out that dualisability is sufficient, so this problem
will only manifest itself in higher dimensions.

In general we should require that the morphisms in C should also have duals,
which leads us to the notion of adjoints.

5.2 Adjoints in 2-categories
Recall the unit-counit definition of an adjunction:

Definition 5.2.1. Let C,D be two categories and F : C → D and G : D →
C two functors. An adjunction between F and G consists of two natural
transformations

u : idC ⇒ GF the unit
v : FG⇒ idD the counit

such that the following two triangles13 commute:

F ◦ idC idC ◦G

F ◦G ◦ F idD ◦F G ◦ F ◦G G ◦ idD (2)

idFidF ×u
idG

u×idG

v×idF idG×v

In this situation we say that F is a left adjoint of G and that G is a right
adjoint of F .

Note that the expression η×θ means the horizontal composition of the natural
transformations η and θ rather than the vertical composition.

Remark 5.2.2. Observe the formal similarity of the triangles of equation (2) to
the ones of equation (1). This is a good indication that adjoints are ‘higher
duals’.

13Once again, these triangles are really pentagons. If we think of Cat as a strict 2-category,
then they are squares since we don’t need any associators.
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Proposition 5.2.3. Adjoints, if they exist, are unique up to unique isomor-
phism.

The category Cat is the prototypical example of a 2-category: the objects
of Cat are all (small) categories, the 1-morphisms are functors, and the 2-
morphisms are natural transformations. Definition 5.2.1 didn’t really rely on
any of the properties of Cat, and so we can immediately generalise it to any
2-category:

Definition 5.2.4. Let C be any 2-category. Let X,Y be objects of C and let
F : X → Y and G : Y → X be two 1-morphisms. Say that a 2-morphism
u : idX → G ◦ F is the unit of an adjunction between F and G if there
exists another 2-morphism v : F ◦G→ idY such that the following two triangles
commute:

F ◦ idX idX ◦G

F ◦G ◦ F idY ◦F G ◦ F ◦G G ◦ idY

idFidF ×u
idG

u×idG

v×idF idG×v

In this case we say that v is the counit, and that F (resp. G) is left (resp.
right) adjoint to G (resp. F ).

Remark 5.2.5. If u is the unit of an adjunction, then a compatible counit v is
uniquely determined, and vice versa. So it’s enough to specify the existence of
either u or v.
Example 5.2.6. A category with a single object is the same thing as a monoid.
Similarly if C is a 2-category with a single object ∗ then the category HomC(∗, ∗)
is a monoidal category.

Conversely if M is a monoidal category then we can build a 2-category BM
with a single object *, hom-category HomBM (∗, ∗) ∼= M and composition law
for 1-morphisms given by the tensor product on M .

Then an object X of M is right dual to an object Y of M if and only if it is
right adjoint to Y when both are considered as 1-morphisms of BM . We often
call BM the delooping of M .

Adjoints are closely related to invertibility:

Proposition 5.2.7. Let C be a 2-category in which every 2-morphism is invert-
ible. Let f be a 1-morphism of C. Then the following are equivalent:

i) f is invertible.

ii) f admits a left adjoint.

iii) f admits a right adjoint.

Definition 5.2.8. Say that a 2-category C has adjoints for 1-morphisms if
every 1-morphism has both a left and a right adjoint.
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5.3 Adjoints in higher categories
We’d like to generalise Definition 5.2.4 from 2-categories to higher categories.

Definition 5.3.1. Let n ≥ 2 and let C be an (∞, n)-category. Let h2C be the
homotopy 2-category of C, with

objects←→ objects of C
1-morphisms←→ 1-morphisms of C
2-morphisms←→ isomorphism classes of 2-morphisms of C

Remark 5.3.2. Homotopy n-categories are defined similarly.

Definition 5.3.3. Let C be an (∞, n)-category. Say that C has adjoints for 1-
morphisms if h2C has adjoints for 1-morphisms. More generally, for 1 < k < n
say that C has adjoints for k-morphisms if for any two objects X,Y of C the
(∞, n− 1)-category Map(X,Y ) has adjoints for (k− 1)-morphisms. Say that C
has adjoints if it has adjoints for k-morphisms for all 0 < k < n.

Remark 5.3.4. If every k-morphism in C is invertible then C has adjoints for
k-morphisms. The converse is true provided that all (k + 1)-morphisms are
invertible - this is a consequence of Proposition 5.2.7.
Remark 5.3.5. The condition that C have adjoints depends on the choice of n. If
we regard C as an (∞, n+1)-category with all (n+1)-morphisms invertible then
in general C does not have adjoints for n-morphisms unless it is an∞-groupoid.

If C is monoidal then we can ask for a bit more:

Definition 5.3.6. Let C be a monoidal (∞, n)-category. Say that C has duals
if the following two conditions are satisfied:

i) Every object X has both a left and a right dual when considered as an
object of the homotopy category hC.14

ii) C has adjoints.

Remark 5.3.7. We can generalise our earlier construction of Example 5.2.6. If C
is a monoidal (∞, n)-category then it is possible to build an (∞, n+1)-category
BC (the delooping of C) with a single object *, recovering C as the mapping
object HomBC(∗, ∗). Then C has duals if and only if BC has adjoints.

5.4 Full dualisability
Given a symmetric monoidal (∞, n)-category we’d like to pick out the largest
subcategory with duals.

14Note that hC inherits its monoidal structure from C. If C is symmetric monoidal then this
condition is the condition that every object be dualisable.
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Theorem 5.4.1. Let C be a symmetric monoidal (∞, n)-category. Then there
exists another symmetric monoidal (∞, n)-category Cfd with duals, and a sym-
metric monoidal functor i : Cfd → C, universal among symmetric monoidal
functors j : D → C where D has duals.

Remark 5.4.2. Cfd is determined up to equivalence by the above properties. In
general we can obtain Cfd from C by repeatedly discarding morphisms that don’t
admit adjoints (and objects that don’t admit duals).
Example 5.4.3. If C is a symmetric monoidal (∞, 1)-category then Cfd is equiv-
alent to the full subcategory of C spanned by the dualisable objects.

Definition 5.4.4. Say that an object X of C is fully dualisable if it belongs
to the essential image15 of the functor i.

Example 5.4.5. For each n > 0, the (∞, n)-category Bordfr
n has duals. Every

k-morphism can be identified with an oriented manifold M ; the morphism M̄
(M with the opposite orientation) is both a left and a right adjoint to M .
Example 5.4.6. If C is the (∞, 1)-category Vectk, then an object of C is fully
dualisable if and only if it is finite-dimensional.

This generalises to the following:

Proposition 5.4.7. An object of a symmetric monoidal (∞, 1)-category is fully
dualisable if and only if it is dualisable.

In general full dualisability is a much stronger condition than dualisability!
In dimension 2, there are some simple criteria for testing whether or not an
object is fully dualisable:

Proposition 5.4.8. Let C be a symmetric monoidal (∞, 2)-category. Let X be
an object of C. Then X is fully dualisable if and only if it admits a dual X∨
and the evaluation map ev : X ⊗X∨ → 1 has both a left and a right adjoint.

6 The Cobordism Hypothesis
In this short section we rigourously state the Cobordism Hypothesis. We begin
with some bookkeeping.

6.1 Terminology
Definition 6.1.1. An (∞, n)-functor between two (∞, n)-categories C and D
is a map of the underlying simplicial spaces (which is itself a natural transfor-
mation between the defining functors).

Theorem 6.1.2. The collection Fun(C,D) of (∞, n)-functors between two (∞, n)-
categories itself forms an (∞, n)-category.

15Recall that the essential image of a functor F : D → E is the smallest isomorphism-
closed subcategory of E containing the image of F .
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Remark 6.1.3. The collection of all (small) (∞, n)-categories naturally forms an
(∞, n+ 1)-category with mapping objects Map(C,D) = Fun(C,D).

Proposition 6.1.4. We can also define symmetric monoidal (∞, n)-functors
between symmetric monoidal (∞, n)-categories. The collection of symmetric
monoidal (∞, n)-functors between two symmetric monoidal (∞, n)-categories C
and D itself forms an (∞, n)-category, which we refer to as Fun⊗(C,D).

Definition 6.1.5. A fully extended framed n-dimensional topological
field theory is a symmetric monoidal (∞, n)-functor with source Bordfr

n . The
collection of all fully extended framed n-TFTs with target C is the (∞, n)-
category Fun⊗(Bordfr

n , C).

Definition 6.1.6. Given an (∞, n)-category C, I will denote the underlying
(∞, 0)-category16 of C by π≤∞(C). This notation is not standard.

6.2 A Precise Statement
Claim 6.2.1 (the Cobordism Hypothesis). If C is a symmetric monoidal (∞, n)-
category then the evaluation functor Z 7→ Z(∗) induces an equivalence

Fun⊗(Bordfr
n , C)

∼−→ π≤∞(Cfd)

In particular, the Cobordism Hypothesis states that Fun⊗(Bordfr
n , C) is an

∞-groupoid, and hence a topological space. We can think of it as a classifying
space for fully dualisable objects in C.

It is not too difficult to prove that Fun⊗(Bordfr
n , C) is an ∞-groupoid. The

hard part of proving the Cobordism Hypothesis is proving that the induced
functor is an equivalence. A sketch proof of this is given by Lurie in [1].

16a.k.a. ∞-groupoid
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