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1 Introduction
Let A be a ring (not necessarily commutative, but noetherian1). Associated to
A are many interesting invariants, which tell us about the geometry, homological
algebra, representation theory etc. of A. Often one thinks of an invariant as
being a number, or maybe a vector space, or at least something reasonably
concrete. But one can attach categories (with various kinds of structure on top
of them) to A, and consider these as invariants. For example:

• The (abelian) categories mod-A and Mod-A. These are rather strong
invariants: Morita theory tells us that when A and A′ have equivalent
module categories, then Z(A) ∼= Z(A′). In the non-affine setting, one has
the Gabriel-Rosenberg theorem, which says that if X is a quasi-separated
(e.g. noetherian) scheme then X can be recovered from Coh(X).

• The triangulated category Db(mod-A) and variants; in particular the big
unbounded derived category D(Mod-A). These are looser invariants that
still know about the homological properties of A. Recovery theorems are
fewer and far between here. One famous example in the geometric setting
is the Bondal-Orlov reconstruction theorem, which says that if X is a
smooth projective variety with (anti)ample canonical bundle then Db(X)
recovers X. For a nice exposition of this see [Căl05].

• The triangulated category per(A) of perfect A-modules, i.e. those com-
plexes of A-modules which are quasi-isomorphic to bounded complexes of
finitely generated projectives.

• DG enhancements of the above triangulated categories. Triangulated cat-
egories have bad formal properties: for example, the category of triangu-
lated categories doesn’t have internal homs. Mapping cones are not functo-
rial. Triangulated categories don’t satisfy any reasonable form of geomet-
ric descent. Nobody knows how to recover invariants like the Hochschild
cohomology HH∗(A) from just the triangulated structure on Db(A). All
of these problems are solved when passing to pretriangulated dg categories.
For more on why you should like dg categories, see [Toë11].

• If A is reasonably commutative2 , one can equip D(A) or per(A) with the
standard monoidal structure given by the (derived) tensor product. This
is the starting point for the subject of tensor triangular geometry.

Here is one natural question to ask. As we will see, it leads to a rich theory.
It is clear that per(A) is a subcategory of Db(mod-A). What sort of difference
is there between these two things?

1The point of this assumption is to make mod-A an abelian category. It is enough to
assume that A is coherent and work with coh-A instead.

2E2 is enough. A more down to earth example is when A = B ⊗ Bop is the enveloping
algebra of an algebra B, so that D(B) is the derived category of B-bimodules.
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Example 1.1. Let k be a field and consider the ring A := k[x]/x2. The module
k has a projective resolution given by

· · · x−→ A
x−→ A

x−→ A
x−→ A

from which it is clear that Exti(k, k) ∼= k for all i ≥ 0. Since perfect complexes
must have bounded self-Exts, k cannot be perfect.

So we want to consider the difference between the triangulated category
Db(mod-A) and its triangulated subcategory per(A). In other words, we are
interested in the (Verdier) quotient Db(mod-A)/per(A). We will soon see
the following result, whose main ingredient is the Auslander–Buchsbaum–Serre
theorem:

Theorem 1.2. Let A be a commutative noetherian ring of finite Krull dimen-
sion. Then A is regular if and only if Db(mod-A)/per(A) vanishes.

Recall that every smooth commutative ring is regular3. So for example, the
ring C[x1, · · · , xn] is regular, since it is the coordinate ring of complex n-space,
which is smooth. The rings C[x, y]/xy, C[x, y]/(x2 − y3), and C[x, y]/(x3 +
x2 − y2) are not smooth, since they are the coordinate rings of the coordinate
axes xy = 0, the cuspidal cubic x2 = y3, and the nodal cubic y2 = x2 + x3

respectively, all of which have singular points (to see this, either draw a picture
or use calculus).

With this in mind we will call Dsg(A) := Db(mod-A)/per(A) the singu-
larity category of A, and regard it as a homological invariant that detects the
singularities of A (even when A is noncommutative!). Along the way we will see
a purely homological characterisation of smoothness in terms of global dimen-
sion4 - it should already be clear that the existence of finitely generated modules
without a bounded projective resolution is an obstruction to the vanishing of
Dsg(A).

Remark 1.3. The above motivates our choice of Db(mod-A) as opposed to the
sometimes more natural choice ofD(Mod-A): the quotientD(Mod-A)/per(A)
fails to tell us much about the singularities of A, since D(Mod-A) is far too big
of an object. From the perspective of homotopy theory, we may want A to be a
differential graded algebra, in which case Db(A) is not necessarily well behaved
(e.g. A need not be an object of Db(A)). There are some fixes one can make
here which we will discuss later.

After this we will do some computations. David outlined a nice computation
of Dsg(k[x]/x2) using AR theory.

In the next part of the seminar we will see two important alternate construc-
tions of the singularity category.

3The converse is true if one works over a perfect field, and in particular a field of charac-
teristic zero.

4Be warned that there is a terminology clash here. This homological characterisation of
smoothness is not equivalent to ‘homological smoothness’; i.e. asking that A be perfect as an
A-bimodule.
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The first description has a representation-theoretic flavour. Suppose that
A is (Iwanaga)–Gorenstein; i.e. A has finite injective dimension over itself.
Buchweitz [Buc86] noticed that the singularity category of A has a description
as the stable category of maximal Cohen–Macaulay modules over A. Recall
that a finitely generated A-module X is MCM if ExtiA(X,A) vanishes for i > 0
(there is a more general characterisation in terms of depth). Loosely, the stable
category of MCM modules is what one gets by taking the category of MCM
modules and quotienting out by projective modules. The shift of an MCM
module X is its (inverse) syzygy.

The second description has a more geometric flavour. Suppose that R =
kJx1, . . . , xnK/f is a complete local hypersurface singularity. A matrix factori-
sation of f is a pair of free finite rank kJx1, . . . , xnK-modules M and N together
with ‘differentials’ d : M → N and d : N → M such that d2 = f . One can or-
ganise the collection of matrix factorisations into a category, and after modding
out by a suitable notion of homotopy the category of matrix factorisations of f
becomes equivalent to the singularity category of R. There is much literature
in this direction, which we will mention later.

As a general reference for this part, see [Boo19, Chapter 6] or [Boo21, Sec-
tions 4 and 5 ] and the references contained therein. A good general reference
is [Sym22].

1.1 Possible further directions
After this, there are lots of other directions we could go in, which will be dictated
by the interests of participants. Here are some possible ones.

• Globalising the singularity category: one can define the singularity cate-
gory of a scheme completely analogously to our definition- this was first
done by Orlov [Orl04], who coined the name “singularity category”. Orlov
shows that the (idempotent completion of the) singularity category of a
reasonable5 scheme only depends on its formal completion at the singular
locus [Orl11]. This allows one to do some nice geometric computations:
e.g. the nodal cubic and the coordinate axes in the plane are singular
equivalent, since they are (visibly!) analytically locally equivalent near
their singular points. There is also an analogous description of the singu-
larity category in terms of MCM sheaves.

• Knörrer periodicity: f ∈ k[x1, . . . , xn] has the same singularity category
as f + xn+1xn+2 ∈ k[x1, . . . , xn+2] [Knö87]. A nice proof is in [Dyc11].

5Orlov’s term is ELF, which stands for ‘separated, noetherian, of finite Krull dimension
and with Enough Locally Free sheaves’. Recall that a scheme has enough locally free sheaves
if for every coherent F there is an epi E � F with E locally free. This is also known as the
resolution property, since this implies that every coherent sheaf has a resolution by vector
bundles. Every divisorial scheme, and in particular every quasi-projective variety over a field,
has the resolution property.
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• Noncommutative computations, in particular those of [Cra20] who com-
putes singularity categories for noncommutative deformations of Kleinian
singularites (see also [KY18]).

• Homological mirror symmetry: Landau-Ginzburg models (or rather their
categories of matrix factorisations) are mirror to Fano manifolds (or rather
their Fukaya categories). There is a lot of literature on this, none of which
I am an expert on.

• Relationship to various kinds of Koszul duality: see for example [CT13,
Tu14]. For an algebraic approach, Keller and Wang notice that if A is a
finite dimensional algebra, then there is a triangle equivalence

Dsg(Aop)op ∼=
per(Ω(A∗))

thick(R)

where R is the quotient of A by its Jacobson radical [CKWW21].

• DG singularity categories: one can enhance everything to the world of
(pretriangulated) dg categories. In particular this requires some material
on dg quotients, as in [Dri04]. For examples of the fully dg approach, see
[BRTV18, Pip22]. See the next item for some applications.

• Hochschild theory: this first requires a brief discussion of dg singularity
categories. One can then compute the Hochschild cohomology of Dsg of
a hypersurface, following [Dyc11]: more or less it is the Milnor algebra of
the singularity. Possible discussion of the Mather–Yau theorem [MY82,
GP17] in the context of recovery theorems: the dg singularity catgeory is
a complete invariant for quasi-homogeneous hypersurface singularities of
fixed Krull dimension. As a follow-up, one can go into singular Hochschild
cohomology [Kel18] and a stronger recovery theorem where one drops
quasi-homogeneity [HK18, Gro92]. Application to the classification of
singular threefold flops [Boo21].

• Krause’s big singularity categories, and their relationship to Positselski’s
coderived categories [Bec14]. This links back to the Koszul duality story
above. These big singularity categories can e.g. be used to give a defini-
tion of what the singularity category of an unbounded differential graded
algebra is. See also [GS20] in this direction.

• Representation-theoretic aspects: Kalck and Yang’s relative singularity
categories [KY16, KY18, KY20]. Singularity categories as generalised
cluster categories [HK18, Boo19, Boo21], especially in the smooth 3CY
setting where they are controlled by a superpotential [VdB15]. This links
back to the threefold flops story.

• Other types of relative singularity categories, in particular those associated
to certain morphisms X → Y of schemes, like Efimov and Positselski’s
construction [EP15].
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2 Triangulated categories
The notion of triangulated category is an axiomatisation of some of the prop-
erties that categories such as Db(A) enjoy. As intimated above, triangulated
categories will not be completely sufficient for our uses, so we only give a sketch
of the ideas. See [Nee01] for a comprehensive discussion.

Let k be a commutative ring. A k-linear triangulated category is a k-linear
category C together with two extra pieces of data. The first piece of data is a
linear autoequivalence Σ of C, which we call the suspension or the shift functor.
A triangle in C is a sequence of three morphisms

X → Y → Z → ΣX

which we will frequently abbreviate by dropping the ΣX term and letting the
rightmost arrow point to nowhere. The second piece of data is a class of ‘exact’
(or ‘distinguished’) triangles satisfying the following properties:

• TR0: Exact triangles are closed under isomorphisms.

• TR1: The triangle X id−→ X → 0→ is exact.

• TR2: Every morphism f : X → Y has a cone Z, which fits into an exact
triangle of the form X → Y → Z →. It follows from the other axioms
that cones are unique up to non-unique isomorphism. We caution that
the cone is not functorial.

• TR3: One can rotate triangles: the triangle X → Y → Z → is exact if
and only if Y → Z → ΣX

−−→ is, where one has to flip the sign on the
indicated map.

• TR4: Given a morphism f → g in the arrow category (i.e. a commutative
square from f to g!) then there is an induced morphism cone(f)→ cone(g)
fitting into a morphism of exact triangles. This morphism will not in
general be unique.

• TR5: the famous octahedral axiom. Loosely this encodes the third iso-
morphism theorem, if one thinks of cones as homotopy cokernels.

These axioms are referred to by various different names in the literature. TR4
is a consequence of the others.

The idea is that an exact triangle behaves like a rolled-up long exact se-
quence. Indeed in our main exampleDb(A), the suspension functor Σ is precisely
the shift [1], and the exact triangles are precisely those triangles isomorphic to
triangles of the form X → Y → C(f)→, where C(f) denotes the usual mapping
cone of chain complexes. It is well known that such triangles give long exact
sequences of the form

· · · → Hi(X)→ Hi(Y )→ Hi(C(f))→ Hi+1(X)→ · · ·

and indeed we see that the morphism C(f)→ X[1] corresponds precisely to the
connecting morphisms in this long exact sequence.
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Remark 2.1. Say that a triangulated category has functorial cones if there is
a functor C : Ar(C) → C such that for each f , the object C(f) is a cone
of f . Then a triangulated category C has functorial cones if and only if C is
semisimple abelian. This fact goes back to Verdier’s thesis [Ver96, 1.2.13], but
Greg Stevenson has given a modern proof [Ste]. The loose idea is that having
functorial cones actually forces C to have kernels and cokernels. Then the claim
follows because monos and epis split.

Remark 2.2. Suppose that C is a stable∞-category, so that the homotopy cate-
gory h0C is canonically triangulated. In C, one can make a functorial choice
of cone, giving a morphism Fun(∆1, C) → C. One then obtains a functor
h0Fun(∆1, C) → h0C. There is a comparison map h0Fun(∆1, C) → Ar(h0C),
but it fails to be an equivalence, as spelled out in [Lur]. In particular, the ‘func-
torial cone’ does not factor through a morphism Ar(h0C)→ C, and so this does
not prove that every enhanceable triangulated category is actually abelian.

A triangle functor (also called an exact functor or a triangulated functor)
between triangulated categories is a linear functor which preserves shifts and
cones - or equivalently, a functor which preserves exact triangles.

If D is a triangulated category, then a triangulated subcategory C is a full
additive subcategory which is closed under shifts and cones6. This is equiva-
lent to the inclusion functor D → C being a triangle functor. A triangulated
subcategory is itself a triangulated category in an obvious way.

Let D be a triangulated category. A triangulated subcategory C of D is
called thick (or épaisse) if it is closed under taking direct summands.

Example 2.3. When D = Db(A), then per(A) is the thick closure of A, i.e. the
smallest thick subcategory containing the object A.

Let C ↪→ D be the inclusion of a thick subcategory. There exists a triangu-
lated category D/C, the Verdier quotient, which is initial among all triangulated
categories T equipped with a triangle functor D → T whose kernel contains D.
In fact, the kernel of the projection map D → D/C is precisely C.

Loosely, to construct D/C, the objects are the same as the objects of D, and
the morphisms are equivalence classes of roofs X ← Y → Z where the cone of
the left hand map is in C.

More generally, one can form the quotient D/C even when C is not thick in
D; the kernel of the quotient map is then the thick closure of C inside D.
Example 2.4. Let Kb(A) denote the chain homotopy category, where the mor-
phisms are chain maps up to chain homotopy equivalence. Let Kb

ac(A) denote
the subcategory of acyclic complexes; this is a thick subcategory. The Verdier
quotient Kb(A)/Kb

ac(A) is precisely the bounded derived category Db(A).

We can finally define the singularity category.
6Note that a full subcategory that is closed under cones is automatically closed under

finite direct sums and shifts, due to the existence of the exact triangles X → 0→ ΣX → and
X → X ⊕ Y → Y

0−→.
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Definition 2.5. Let A be a ring. Then the singularity category is the Verdier
quotient

Dsg(A) :=
Db(mod-A)

per(A)

The singularity category comes equipped with a natural projection map
Db(mod-A) → Dsg(A). Note that since per(A) is a thick subcategory, the
kernel of this projection map is precisely per(A).

3 Global dimension
Let A be a noetherian ring. If M is an A-module, the projective dimension of
M is the minimal length of a projective resolution ofM . So the modules of pro-
jective dimension 0 are precisely the projective modules. The global dimension
of A is defined to be the supremum of the projective dimensions of all finitely
generated7 A-modules.

A priori, there is a left and a right notion of global dimension. However,
for two-sided noetherian rings the two concepts agree, and we will use the two
notions interchangeably.

Example 3.1. A ring A has global dimension zero if and only if every module is
projective. These are precisely the semisimple rings. A commutative semisimple
ring is a finite direct product of fields.

Example 3.2. If A has global dimension n, then if M,N are two A-modules, we
must have Exti(M,N) ∼= 0 for i > n. In particular, our example earlier shows
that when k is a field, the ring k[x]/x2 must have infinite global dimension.

Lemma 3.3. If A has finite global dimension then Dsg(A) vanishes.

Proof. Take a bounded complex M = Mp → · · · → Mq of finitely generated
modules. By hypothesis, eachMi has a bounded resolution Pi by finitely gener-
ated projectives, and moreover each differential Mi →Mi+1 lifts to a morphism
Pi → Pi+1 of complexes. It follows that M is quasi-isomorphic to the totalisa-
tion of the double complex Pp → · · · → Pq, which is clearly perfect. Hence M is
quasi-isomorphic to a perfect complex. So per(A) = Db(A) and hence Dsg(A)
vanishes.

We now pass to the setting of commutative rings. Recall that if (R,m, k) is
a commutative noetherian local ring, then it has finite Krull dimension, since
there is an inequality dim(R) ≤ dimk(m/m2), the dimension of the cotangent
space (this latter number is also equal to the minimal number of generators of
m). Say that R is regular if dim(R) = dimk(m/m2); or in other words, the
(co)tangent space has the expected dimension. A commutative ring is defined

7One may drop this condition, if desired.
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to be regular if all of its localisations at maximal (equivalently, prime) ideals
are regular. Geometrically, a variety is regular if and only if it is smooth8.

Theorem 3.4 (“Auslander–Buchsbaum–Serre9”). Let R be a commutative local
noetherian ring. The following are equivalent:

1. R is regular.

2. gldim(R) is finite.

3. Dsg(R) vanishes.

Moreover, if any of the above hold, the global dimension of R is equal to its
Krull dimension.

Proof sketch. The equivalence of the first two statements is [Lam99, 5.84]. The
proof that (1) =⇒ (2) is not terribly hard: one uses an induction on the Krull
dimension to show the key equalities

gldim(R) = pdR(k) = dim(R)

where k is the residue field. This also proves the statement about Krull di-
mension. The proof of the converse is significantly more difficult and we avoid
mentioning it here. (2) =⇒ (3) is the previous Lemma and (3) =⇒ (2) follows
from the key equalities above.

Corollary 3.5 (“Global Auslander–Buchsbaum–Serre”). Let R be a commuta-
tive noetherian ring. The following are equivalent:

1. R is regular.

2. Dsg(R) vanishes.

Moreover, if either of the above hold, the global dimension of R is equal to its
Krull dimension.

Proof sketch. This follows from [Lam99, 5.94]. If R is regular then each Rm is
regular and hence of finite global dimension by ABS. For every finitely generated
moduleM , there exists a maximal ideal m of R such that pdR(M) = pdRm

(Mm),
by a compactness argument. In particular every finitely generated R-module has
finite projective dimension and so Dsg(R) vanishes. For the converse, if Dsg(R)
vanishes then so does each Dsg(Rm), because resolutions localise. Hence each

8In general the two concepts differ when working with objects from arithmetic geometry:
smoothness is a stronger condition. Note also that smoothness is a property of a morphism
(for varieties, the structure morphism to the base field) whereas regularity is a property of a
scheme.

9Historical remark: the ABS theorem is (1) ⇐⇒ (2), which long predates the invention of
singularity categories. The implication (1) =⇒ (2) was first noticed by Buchsbaum, and the
implication (2) =⇒ (1) was independently proved by both Serre and Auslander–Buchsbaum.
The equivalence of both statements with (3) and the statement about the Krull dimension
are easy corollaries of the proof.
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Rm is regular local by ABS and hence R is regular. The statement about Krull
dimension follows from the equalities

gldim(R) = sup
m

gldim(Rm) = sup
m

dim(Rm) = dim(R)

where in the second equality we are using ABS.

Note that we have not proved that a commutative noetherian regular ring
must have finite global dimension. In fact this is false! Nagata gave an example
of a commutative noetherian regular ring R with infinite Krull dimension (and
hence, by global ABS, global dimension). Each localisation of R must have finite
- but arbitrarily large - global dimension. Although Dsg(R) vanishes, it does
not vanish in a ‘uniform’ way, in the sense that one cannot uniformly bound the
projective dimension of all finitely generated modules.
Example 3.6 (Nagata [Nag62]). Let In ⊆ N denote the interval [2n−1, 2n −
1], which has length 2n−1. Let A = C[x1, x2, · · · ] be the infinite-dimensional
polynomial ring and for each n ∈ N let pn denote the ideal generated by {xi :
i ∈ In}. Put S := A/∪npn and put R := AS the localisation. Since pn has height
2n−1 in A it follows that R has infinite Krull dimension. To prove that it is
regular, first use the Prime Avoidance Lemma to show that every maximal ideal
of R is of the form pnR, so that we need to check that each Apn

is regular; this
holds since it is a localisation of a regular ring. To prove that it is noetherian
boils down to checking that each Apn is noetherian; again this holds since it can
be written as a localisation of a noetherian ring.

4 Some explicit computations (David)

5 Buchweitz’s stable category (Sofia)
Based on [Buc86].

A (noncommutative) ring A is (Iwanaga)–Gorenstein if A has finite in-
jective dimension over itself; i.e. there exists a bounded complex I of injective
A-modules with a quasi-isomorphism I ' A. A module M over a Gorenstein
ring A is maximal Cohen–Macaulay (or just MCM for short) if there is a
natural quasi-isomorphism RHomA(M,A) ' HomA(M,A). This is equivalent
to the condition that ExtiA(M,A) ∼= 0 for i > 0.

Suppose that A is a commutative local ring with residue field k. The depth of
a moduleM is the smallest number i for which Exti(k,M) is nonzero. WhenM
is finitely generated, this is the length of a maximal regular sequence (xn) ∈ m
for M . Then M is MCM if and only if depth(M) = dim(A). The ring A is
Cohen–Macaulay if and only if A is an MCM module over itself; a CM ring
is necessarily Gorenstein. The Auslander–Buchsbaum formula says that if
M has finite projective dimension then pdA(M) + depth(M) = depth(A). In
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particular if A is CM then an MCM module has either 0 or infinite projective
dimension.

Suppose from now on that A is Gorenstein. Let M be an MCM module. A
syzygy ofM is a module ΩM which fits into a short exact sequence of the form

0→ ΩM → P →M → 0

where P is a finitely generated projective. One can check using the Ext charac-
terisation that ΩM is again MCM. Note that one can stitch together the syzygy
exact sequences for all ΩiM into a projective resolution of M .

One can define the stable category of MCM modules MCM(A) to have
objects the MCM A-modules, and morphisms given by

Hom(M,N) :=
Hom(M,N)

morphisms which factor through a projective module
.

In particular, projective modules go to zero inMCM(A). Hence taking syzygies
produces a well defined endofunctor on MCM(A).

The natural functor MCM(A) → Dsg(A) sends a morphism which factors
through a projective to zero, and hence defines a functor Ψ : MCM(A) →
Dsg(A).

Theorem 5.1. Ψ is an equivalence. Moreover Ψ sends Ω to the inverse shift
[−1]. Hence MCM(A) is a triangulated category, with shift functor the ‘inverse
syzygy’ Ω−1.

As a triangulated category, MCM(A) admits a notion of Ext groups, which
we denote by Ext and refer to as the stable Ext groups. One pleasing fact is
the following:

Proposition 5.2. If A is a Gorenstein ring and M,N are MCM R-modules
then for j > 0, there is an isomorphism ExtjA(M,N) ∼= ExtjA(M,N). If j < −1

then there is an isomorphism ExtjA(M,N) ∼= TorA−j−1(N,M∨).

Hence the stable Exts can be computed in positive degrees as the usual Exts.
Buchweitz’ proof uses the notion of a complete resolution. A fancier proof shows
that (at least when M = N) there is an exact triangle

T → RHomA(M,N)→ RHomA(M,N)→

where T is the standard bar complex computing Tor(N,M∨).

6 Matrix factorisations (Matt)
A nice reference here is [Dyc11]. See also [Sym22].
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Let R be a complete local hypersurface singularity; i.e. R is of the form
kJxK/σ for some σ ∈ m2. Observe that R is Gorenstein: one can prove this
using the Koszul complex (more generally, the same proof shows that an lci ring
is Gorenstein). Eisenbud was the first to notice the following surprising fact:

Theorem 6.1 ([Eis80]). If R is a complete local hypersurface singularity then
Ω2 ∼= id as endofunctors of MCM(R).

In particular, Ω is the shift functor of MCM(R). One can stitch the syzygy
exact sequences for M together to build a 2-periodic resolution of M , and this
was originally how Eisenbud’s results were formulated. The converse is also
true: in fact if R is a complete local Gorenstein ring with Ωp ∼= id for some
p ≥ 1 then R is actually a hypersurface singularity.

So Dsg of a complete local hyperasurface singularity is actually a 2-periodic
triangulated category. What sort of structure does this buy us? Can we write
down a small 2-periodic model?

For brevity, write A := kJxK, so that R = A/σ.

Definition 6.2. A matrix factorisation of σ is a free finitely generated Z/2-
graded kJxK-module X = (X0, X1) together with an odd A-linear map d : X →
X satisfying d2 = idX ·σ.

We will draw matrix factorisations as diagrams X0
d0
←→
d1
X1. If we choose bases

for the Xi, we get a pair φ, ψ of matrices over A satisfying φψ = σ · id and
ψφ = σ · id. In particular this forces φ and ψ to be square matrices of the same
dimension.

Example 6.3. For the nodal cubic σ = y2 − x2 − x3 in the plane, one matrix
factorisation is

φ = ψ =

(
y x+ x2

−x −y

)
The category of matrix factorisations assembles into a Z/2-graded dg cate-

gory in the usual way: put

Homi(X,Y ) = HomA(X0, Yi)⊕HomA(X1, Y1+i)

with differential ∂(f) = dY f − (−1)|f |fdx. The homotopy category of this dg
category is denoted MF(A, σ) and is referred to as the homotopy category
of matrix factorisations. This is a triangulated category: the shift Σ sends
X0

d0
←→
d1
X1 to X1

d1
←→
d0
X0 (i.e. it rotates the picture by 180 degrees).

Theorem 6.4. There is a triangle equivalence

MF(A, σ) ' MCM(R).

In fact, this enhances to an equivalence of dg categories.

We prove the theorem in several steps. We begin by constructing a functor.
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If X is a matrix factorisation, put C(X) := coker(d0), which admits a projec-
tive resolution X1

d0−→ X0. Note that C(X) is naturally an R-module, since the
diagram

X0 C

X1

X0 C

d1

σ

d0
0

commutes.

Lemma 6.5. C(X) is an MCM R-module.

Proof. Since dim(A) = 1 + dim(R), the Auslander–Buchsbaum formula tells us
that an R-module M is MCM if and only if pdA(M) = 1. Since C(X) is not
projective, it must have projective dimension 1 as required.

Lemma 6.6. C extends to a triangle functor C : MF(A, σ)→ MCM(R).

Proof. We first show that C is a functor; i.e. we need to show that if f : X → Y
is a nullhomotopic morphism of matrix factorisations then C(f) factors through
a projective module. This uses the useful observation that the ‘left unwinding
mod σ’

· · · → X1 ⊗A R→ X0 ⊗A R→ X1 ⊗A R→ X0 ⊗A R := X̃

resolves C(X). In fact, using this one can show that if f is nullhomotopic then
C(f) will factor through bothX1⊗AR and Y0⊗AR. To show that C is a triangle
functor, observe that C(ΣX) is resolved by the brutal truncation τ≤−1(X̃)[−1].
But this complex resolves Ω(CX).

Proof of the Theorem. We have a triangle functor C : MF(A, σ) → MCM(R),
so it is enough to check that C is an equivalence. To show that C is essentially
surjective, let M be an MCM R-module. Since it has projective dimension 1

over A, it has a length two A-free resolution X1
d0−→ X0. Multiplication by

σ annihilates M , so is nullhomotopic on the resolution. This nullhomotopy is
witnessed by a map d1 : X0 → X1 which fits into a commutative diagram

X1 X0

X1 X0

d0

σ σ
d1

d0

from which it is clear that X := (X0 ⊕X1, d0 ⊕ d1) is a matrix factorisation of
σ. Clearly C(X) ∼= M , so that C is essentially surjective.

13



Next we need to show that C is full, for which we follow the proof of [Dyc11,
Lemma 4.2]. Let f : M → N be a map in the stable category. Choose matrix
factorisations X,Y with C(X) ∼= M and C(Y ) ∼= N . Lift f to a map

X1 X0

Y1 Y0

f̃1

d0

f̃0

d0

Since d0d1 = σ, the pair (f̃0, f̃1) defines a morphism f̃ : X → Y of matrix
factorisations which obviously lifts f . So C is full.

Finally we need to show that C is faithful, which is a bit tricky; see [Lan16,
5.2.2] for a hands-on proof. The loose idea is as follows. Take f, g : X → Y
with Cf = Cg. Extending f periodically gives a map f̃ : X̃ → Ỹ . On the
other hand, resolving Cf gives a different map f̃ ′ : X̃ → Ỹ . Necessarily we
have a homotopy f̃ ' f̃ ′, since they resolve the same thing. By assumption f̃ ′
is homotopic to g̃′ and so composing we get a homotopy f̃ ' g̃. If we could
choose this homotopy to be periodic we would be done, since then it would lift
to a homotopy f ' g. So we have to modify the homotopy a bit to make it
2-periodic.

7 Koszul duality (Björn)
The first part of the talk introduced dg coalgebras, the bar and cobar construc-
tion, and twisting cochains. A good elementary reference for this is [LV12].

The second part was about module-comodule Koszul duality. This is ex-
plained in [Pos11]. The key point is as follows. Let R be a commutative
semisimple ring (i.e. a direct sum of fields). If C is a conilpotent dg R-coalgebra,
then there is an equivalence

D(C)→ D(ΩC)

which sends C to R and R to ΩC.
Finally, the goal was to prove the following theorem, which appears in the

appendix of [CKWW21].

Theorem 7.1. Let k be a field and let R be a finite dimensional commutative
semisimple k-algebra (i.e. a direct sum of finite field extensions of k). Let A be
an Artinian R-algebra. Then there is an equivalence

Dsg(Aop)op ' per(Ω(A∨))

thick(R)
.

Proof. Let C = A∨ be the linear dual coalgebra, which is a conilpotent R-
coalgebra since k-linear duality coincides with R-bimodule duality. There is a
functor Mod-A→ Com-C: an action mapM⊗A→M is adjoint to a coaction

14



map M → Hom(A,M) ∼= M ⊗ C making M into a C-comodule. In fact this
extends to an equivalence K(Inj(A))→ D(C). There is a fully faithful injective
resolution functor Db(A) → K(Inj(A)) and by composition we obtain a fully
faithful triangle functor ι : Db(A)→ D(C).

Since A is finite dimensional, both R ∼= R∨ and A∨ = C are injective A-
modules. In particular, ι induces a triangle equivalence

thickDb(A)(R)

thickDb(A)(A∨)
'

thickD(C)(R)

thickD(C)(C)
.

We note that Keller and Wang write Db(comC) for what we call thickD(C)(R).
Since A is Artinian, R is a thick generator of Db(A) and so the left hand side
is nothing more than Db(R)/thick(A∨). But linear duality is an equivalence
Db(Aop)op → Db(A), and it follows that the left hand side is exactlyDsg(Aop)op.
Turning to the right hand side, Koszul duality gives us an equivalence

thickD(C)(R)

thickD(C)(C)
' per(ΩC)

thick(R)

as required.

One can check that Ω(C) is isomorphic to the Koszul dual A! of A, defined to
be the linear dual of the coalgebra B(A). If A is the path algebra of a quiver Q
with admissible relations, then one can take R ∼= ⊕i∈Q0kei to be the sum of the
vertex idempotents; this is the motivating example. For a possible extension of
this theorem, see [GS20]. We also remark that the categoryK(Inj(A)) appearing
in the proof is closely related to Krause’s big singularity category of A; cf.
[Bec14, Kra05].

8 Relative singularity categories (Nick)
Let R be a commutative noetherian k-algebra. Take a finitely generated R-
module M and look at the ring A := EndR(R⊕M). The idea is that A should
behave like a ‘noncommutative partial resolution’ of R. There’s a base change
functor Mod-R → Mod-A given by X 7→ X ⊗R (R ⊕ M), and its derived
functor is a fully faithful embedding D(R) → D(A). Since this sends R to the
bounded complex R ⊕ M , this gives an embedding per(R) ↪→ Db(A). The
relative singularity category, whose definition is due to Burban and Kalck
[BK12], is the Verdier quotient

∆R(A) :=
Db(A)

per(R)
.

Note that if M ∼= 0 then ∆R(A) ' Dsg(R), so this is a generalisation of the
notion of singularity category.
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Remark 8.1. If A is any k-algebra with a idempotent e, then one can define the
relative singularity category to be the Verdier quotient

∆e(A) :=
Db(A)

thick(eA)
.

There is a fully faithful triangle functor j! : D(eAe) → D(A) given on objects
by j!X := X ⊗L

eAe eA, and clearly we have thick(eA) = j!per(eAe). In fact j!
is part of a recollement [KY16, 2.10]. If R, M , and A are now as above, note
that A comes with an idempotent e = idR. We have isomorphisms eA ∼= R⊕M
and eAe ∼= R, and hence get a triangle equivalence

∆R(A) ' ∆e(A).

If R is Gorenstein and M is an MCM module then we have an isomorphism
A/AeA ∼= EndR(M), where the target is the endomorphism ring of M in the
stable category.

Where does the definition of a relative singularity category come from? The
motivation is from algebraic geometry. Assume that k has characteristic zero.
For readability, all functors in this section will be derived. Let X be a k-variety
and π : X̃ → X a resolution of singularities. There is a derived pushforward
functor π∗ : Db(X̃) → Db(X), and a derived pullback functor π∗ : Db(X) →
D(X̃). They are adjoints10. The projection formula tells us that the unit
of this adjunction is F → π∗π

∗F ' F ⊗ π∗OX̃ . Say that X has rational
singularities if the natural map OX → π∗OX̃ is a quasi-isomorphism. If this
is the case, then by the projection formula π∗ is fully faithful, and in particular
we get an embedding per(X) ↪→ Db(X̃) ' per(X̃).

The ring R is to be thought of as X, and the ring A is supposed to be like its
resolution X̃. The pullback π∗ gets replaced by j!, and hence the relative singu-
larity category is supposed to behave like the Verdier quotient per(X̃)/per(X),
which measures the failure of π∗per(X) to be all of per(X̃).

With this in mind, let’s try to globalise the construction of our noncommuta-
tive partial resolution A. Let X be a variety with isolated Gorenstein singulari-
ties (i.e.X has isolated singularities, and at each singular point p ∈ X the formal
completion X̂p is a complete local Gorenstein ring). If F ′ is a coherent sheaf on
X, put F := F ′ ⊕OX . Let A := End(F) be the endomorphism sheaf, which is
a coherent sheaf of rings on X. This defines a ringed space X := (X,A) which
is supposed to behave like a partial resolution of X. Note that X is a sheaf of
noetherain rings so it makes sense to consider the abelian category Coh(X) and
its bounded derived category Db(X). Obnserve that there are natural functors
ψ := F ⊗L − : per(X)→ Db(X) and ψ := RHom(F ,−) : Db(X)→ Db(X).

10Note that this does not quite make sense since the codomain of π∗ is not the domain of
π∗. Really they are defined on larger derived categories where they are actually adjoints. So
“π∗ a π∗” means that if F ∈ Db(X) and G ∈ Db(X̃), then there is a natural isomorphism
Hom(π∗F ,G) ∼= Hom(F , π∗G).

16



Theorem 8.2 (Burban–Drozd). φ a ψ and the unit id → ψφ is an isomor-
phism; in particular φ is fully faithful.

Hence we may define the relative singularity category

∆X(X) :=
Db(X)

per(X)
.

In [BK12], the relative singularity category is defined to be ∆X(X)ω, the idem-
potent completion of our relative singularity category. Burban and Kalck give
a description of this category in a special case.

Let X be a nodal curve with n singular points and let F ′ be the ideal sheaf
of the singular locus11. With this setup, Burban and Kalck give the following
theorem.

Theorem 8.3 ([BK12]). The ringed space X is a noncommutative resolution of
X (in fact it has global dimension 2). There is an equivalence of triangulated
categories

∆X(X)ω '
n⊕
i=1

(
Db(Λ)

Band(Λ)

)ω
where Λ is the path algebra of the quiver

• • •
a

c

b

c

with relations ab = 0 = cd, and the category of band modules is defined to be

Band(Λ) := {C ∈ Db(Λ) : τ(C) ' C}

where τ , the Auslander–Reiten translate, is given by τ(C) := Λ∗ ⊗L
Λ C[−1].

Remark 8.4. In particular, the two triangulated categories ∆X(X) and
⊕n

i=1
Db(Λ)

Band(Λ)

are equivalent up to direct summands, and hence have the same K-theory.
Remark 8.5. The above theorem can be thought of as a relative version of the
following general theorem, due to Orlov. Let X be an ELF12 scheme with
isolated singular locus {p1, . . . , pn}. Then there are triangle equivalences

Dsg(X)ω '
n⊕
i=1

Dsg(Xpi)
ω '

n⊕
i=1

Dsg(X̂pi)
ω

One cannot in general drop the idempotent completions. We may return to a
proof of this later. In particular one expects a relative singularity category to
have an analogous decomposition into blocks.

11So Proj of the Rees algebra of F ′ is the blowup of X at the singular locus, which is a
resolution since X has nodal singularities.

12Enough Locally Free sheaves; which geometrically is a very mild condition. Concretely
ELF means separated, noetherian, of finite Krull dimension, has closed singular locus (e.g.
locally of finite type over a perfect field), and has the resolution property. Over a perfect field,
quasiprojective varieties satisfy ELF. A good discussion is in [Sym22].
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9 DG categories (Callum G.)
Let k be a commutative ring.

Definition 9.1. A k-linear dg category is a category C enriched over the
monoidal category (Mod-k,⊗) of dg k-modules with the usual tensor product.
In other words, to every pair of elements (x, y) ∈ C2 we assign a chain complex
C(x, y), to every triple (x, y, z) we assign a chain map µxyz : C(x, y)⊗C(y, z)→
C(x, z) satisfying associativity, and for every x ∈ C we assign a map ηx : k →
C(x, x) which is a unit with respect to composition.

Note in particular that for any object x ∈ C, the complex C(x, x) naturally
has the structure of a (unital) dga.

Definition 9.2. A dg functor F : C → D between two dg categories is an
enriched functor; i.e. a map of objects C → D together with, for every pair
(x, y) ∈ C2, a map of complexes Fxy : C(x, y) → D(Fx, Fy). We require that
F satisfies the associativity condition µFx Fy Fz ◦ (Fxy ⊗Fyz) = Fxz ◦µxyz and
the unitality condition Fxx ◦ ηx = ηFx.

In particular, a dg functor F : C → D induces dga morphisms Fxx : C(x, x)→
D(Fx, Fx) for every x ∈ C.
Example 9.3. Examples of dg categories include:

• Mod-k itself. More generally, if A is a k-dga then Mod-A is a k-dg
category.

• If C is a dg category then so is Cop.

• If X is a topological space with a sheaf of rings O, then the category
Mod-O of complexes of sheaves of O-modules is a dg category.

• A dg category with one object is the same thing as a dg algebra. The
inclusion of dg algebras into dg categories is fully faithful.

Definition 9.4. Let C be a dg category. The homotopy category of C is the
k-linear category H0C whose objects are the same as C and whose hom-spaces
are given by (H0C)(x, y) := H0(C(x, y)). Composition is inherited from C.

Example 9.5. H0(dgModk) is the chain homotopy category.

Definition 9.6. Let F : C → D be a dg functor.

• F is quasi-fully faithful if all of its components Fxy are quasi-isomorphisms.

• F is quasi-essentially surjective if the induced functor H0F is essen-
tially surjective.

• F is a quasi-equivalence if it is quasi-fully faithful and quasi-essentially
surjective.
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Two dg algebras are quasi-equivalent as dg categories if and only if they are
quasi-isomorphic as dg algebras. Note that a quasi-equivalence induces an equiv-
alence on H0, but the converse is not true. For a simple example, the morphism
of dgas k ↪→ k[x], where x has degree 1, is an equivalence on H0 but clearly not
a quasi-equivalence.

If C is a dg category, it has a category of right modules, the dg category
Mod-C := dgFun(Cop,Mod-k). In other words, to an object x of C we assign
a complex M(x) together with action maps C(x, y)⊗M(y)→M(x). If x is an
object of C, then we obtain a module hx := C(−, x). The assignment x 7→ hx
is a (quasi-)fully faithful dg functor C → Mod-C which we call the Yoneda
embedding.

The category Mod-C has shifts and cones, defined pointwise: if f : M → N
is a C-linear map then we may define its cone by cone(f) : x 7→ cone(f(x)) and
similarly for morphisms. This makes the homotopy category H0(Mod-C) into
a triangulated category.

Definition 9.7. Say that a dg category is strongly pretriangulated if, for
all morphisms f : x→ y, the following modules are representable:

• The zero module 0.

• The shifts hx[n] for all n.

• The cone cone(hf ).

When these are representable, we define x[n] to be the object representing hx[n]
and cone(f) to be the object representing cone(hf ).

If C is strongly pretriangulated then the homotopy category H0C is canoni-
cally triangulated, with translation functor given by the shift.

Example 9.8. If C is a dg category then Mod-C is strongly pretriangulated.

Every dg category C admits a strongly pretriangulated envelope tri(C),
defined to be the closure of the image of the Yoneda embedding under the zero
module, cones and shifts. The assignment C 7→ tri(C) is left adjoint to the
inclusion of strongly pretriangulated dg categories in all dg categories. The unit
C → tri(C) is the Yoneda embedding.

Definition 9.9. A dg category C is pretriangulated if the natural map C ↪→
tri(C) is a quasi-equivalence.

Remark 9.10. The following are equivalent for a dg category C:

• C is pretriangulated.

• The natural map H0C → H0tri(C) is an equivalence.

• The natural map H0C → H0tri(C) is essentially surjective.
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• C is quasi-equivalent to a pretriangulated dg category.

• C is quasi-equivalent to a strongly pretriangulated dg category.

• Zero, shifts, and cones are all homotopy representable (i.e. representable
in H0(Mod-C)).

In particular if C is pretriangulated then H0C is canonically triangulated.
If T is a triangulated category then a pretriangulated dg category C is an en-
hancement of T if there is a triangle equivalence H0(C) ' T .
Remark 9.11. A functor F : C → D between pretriangulated dg categories is a
quasi-equivalence if and only if H0F is a triangle equivalence. To see that the
latter implies the former, use the isomorphism Hi(C(x, y)) ' (H0C)(x, y[i]).

Now assume that k is a field13. Let A be a dg category and B ↪→ A be a
full dg subcategory. Then there exists a dg category A/B, the dg quotient of
A by B, which is universal (up to quasi-equivalence) among those dg functors
A → C which homotopy annihilate B (i.e. for every b ∈ B, the morphism idb
becomes 0 in H0C). The idea of the dg quotient is to kill all of the objects in B.

The first construction of a dg quotient was given by Keller [Kel99]. Drinfeld
[Dri04] came up with a simple construction: the idea is to adjoin to A, for
every object in b, a contracting homotopy h with dh = idb. Drinfeld also gives
another description using ind-categories which can be useful. Tabuada showed
that A/B is the homotopy cofibre of B ↪→ A, taken in the homotopy category
of dg categories [Tab10].

Example 9.12. Let A be a dg algebra, regarded as a one-object dg category. This
does not have many full subcategories: only the empty subcategory ∅ along with
A itself. The quotient A/∅ is simply A again. The quotient A/A is the dga A〈h〉
with dh = 1; in particular the ring H0(A) is the zero ring and hence A/A is
acyclic.

Theorem 9.13 (Drinfeld). If both B and A are pretriangulated then so is A/B.
Moreover, there is a triangle equivalence

H0(A/B) ' H0(A)/H0(B)

where the right hand side is the Verdier quotient.

In other words, the above theorem of Drinfeld says that if T is a triangu-
lated category, T ′ a full triangulated subcategory, and the inclusion T ′ ↪→ T is
enhanceable, then the Verdier quotient T /T ′ is also enhanceable.

13More generally, we need our dg categories to be homotopically flat; if not we need to first
replace them by suitable resolutions, as in [Dri04].
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In particular, let A be a ring. The pretriangulated dg category Mod-A has
a pretriangulated full dg subcategory Acyc(A) of acyclic complexes of modules.
The dg quotient Mod-A/Acyc(A) is the dg derived category of A, denoted
by Ddg(A). The homotopy category of Ddg(A) is the usual triangulated derived
category D(A) of A. One can then define the dg bounded derived category
Db

dg(A) to be the full subcategory on those objects with bounded cohomology,
and the dg perfect derived category perdg(A) to be the full subcategory on
those objects which represent perfect complexes.

Remark 9.14. There are other ways of constructing the dg derived category, but
all of them yield quasi-equivalent results. Usually the dg derived category is
constructed by taking the dg localisation of Mod-A at the quasi-isomorphisms.
A simple alternate construction is given by taking the full dg subcategory of
Mod-A on the bifibrant objects in either the projective or injective model
structures.To construct Db

dg(A) one can simply take the dg category of right
bounded complexes of projectives with bounded cohomology; with this con-
struction perdg(A) is then the category of strictly perfect complexes.

Definition 9.15. If A is a noetherian ring, its dg singularity category is the
dg category

Ddg
sg (A) :=

Db
dg(A)

perdg(A)
.

As before, H0Ddg
sg (A) is the usual triangulated singularity category of A.

10 Generators in matrix factorisation categories
In this section we will follow [Dyc11]. We’ll work over a field of characteristic
zero. All dg algebras and categories will be Z/2-graded.

Let R = kJx1, . . . , xnK be a commutative power series ring in n variables14
and w ∈ m a nonzero element defining an isolated hypersurface singularity.
Recall that the singularity category of the hypersurface singularity R/w has a
description as the category of matrix factorisations of w. This is a Z/2-graded
dg category MF(R,w) whose objects are matrix factorisations of w and whose
morphism complexes are defined in the usual way.

Remark 10.1. In the non-complete setting, one has to make various technical
modifications since the category MF(R,w) may not be idempotent complete. In
fact MF(R̂, w) can be identified with the idempotent completion of MF(R,w).
This is loosely because the category MF∞(R,w) of infinite rank matrix factori-
sations can be identified with the dg derived category of MF(R,w), and the
compact objects are then identified with MF(R̂, w).

14The Cohen structure theorem says that any commutative complete local noetherian reg-
ular ring containing a field is of this form.
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Recall that there are triangle equivalences

Dsg(R/w) ' MCM(R/w) ' MF(R,w).

In particular an R/w-moduleM , thought of as an object in the singularity cate-
gory, functorially corresponds to a matrix factorisationM stab, the stabilisation
of M . A construction of this stabilisation functor was given by Eisenbud; we
give a description in the case when M := R/I is cut out by a regular sequence
f1, . . . , fr and w ∈ I. Note that (w) need not equal I (in fact it won’t, unless
R/w is smooth). Consider the Koszul complex K of I, which in degree n is
given by Λn(R⊕r) and whose differential s0 is given by contraction:

s0(ei1 ∧ · · · ∧ ein) =
∑
j

(−1)jfijei1 ∧ · · · ∧ ẽij ∧ · · · ∧ ein

where the e1, . . . , er are the obvious basis vectors for Rr and the tilde denotes
that we leave out the corresponding factor from the wedge product. View K
as an R-free resolution of M . Write w =

∑
wifi and consider the element

(w1, · · · , wr) ∈ Rr. Exterior multiplication with this element defines a con-
tracting homotopy s1 for the multiplication of w on M (which must exist since
w annihilates M). Placing Rr in odd degree, the Z/2-graded object

(Λ∗(Rr), s0 + s1)

is then a matrix factorisation representing M stab.

The R-module Λ∗(Rr) can be identified with the free supercommutative al-
gebra R[θ1, . . . , θr] with all θi in odd degree. Note that this really is a finite
R-module, since θiθj = −θjθi. The differential can then be identified as the left
action of the differential operator

r∑
i=1

fi
∂

∂θi
+ wiθi.

Every R-linear endomorphism of R[θ1, . . . , θr] can be represented as a poly-
nomial differential operator (via a dimension count), and so the underlying
Z/2-graded algebra of End(M stab) can be itentified with the ring of polynomial
differential operators on R[θ1, . . . , θr]. Concretely, this has generators θ1, . . . , θn
and T1, . . . , Tn of odd degree, where we think of Ti = ∂

∂θi
. The relations are

• θiθj = −θjθi.

• the graded Weyl relations Tiθj + θjTi = δij . This is the graded Leibniz
rule: if u ∈ R[θ1, . . . , θr] then (Tiθj)(u) = Ti(θju) = δiju− θjTi(u).

• TiTj = −TjTi. This follows from the graded Leibniz rule again: for a
polynomial p ∈ R[θ1, . . . , θr], write p = θiθjq + p′ where θiθj does not
divide p′. Since both sides vanish on p′ we may take p′ = 0. Clearly the
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claim also holds for p = 0 so we can assume that neither θi nor θj divide
q, so both Ti(q) and Tj(q) are zero. The graded Leibniz rule then tells us
that TiTj(p) = −q and hence by symmetry TjTi(−p) = −q too.

With this identification the differential d on the endomorphism algebra sat-
isfies dθi = fi and dTi = wi.
Example 10.2. Let’s do a concrete example. Take R = kJxK, w = x2, and
I = (x). So n = 1 and f1 = w1 = x. In this case, the endomorphism algebra A
is of the form

kJxK 〈θ, T 〉
(θ2, T 2, T θ + θT = 1)

with kJxK-linear differential defined on generators by dθ = x = dT . The element
t := T − θ is a cocycle and the Weyl relations give t2 = −1. We have d(θT ) =
−d(Tθ) = xt, which implies that the cohomology algebra of A is k[t]/(t2 + 1).
In fact, the k-subalgebra of A generated by t is also k[t]/(t2 + 1), which implies
that the inclusion k[t]/(t2 + 1) ↪→ A is a quasi-isomorphism. In particular, the
singularity category of R[x]/x2 is Db(C).
Example 10.3. The previous example was a special case of a theorem which says
that if w is a quadratic form then A is quasi-isomorphic to the associated Clifford
algebra [Dyc11, §5.5]. More precisely, there is a quasi-isomorphism Cl(w) ↪→ A.
Suppose that we are interested in the singularity R = kJx, yK/xy defined by the
coordinate axes in the plane. After a change of coordinates x = u−v, y = u+v,
we may take R ∼= kJu, vK/(u2 − v2) to be given by a quadratic form. Then A is
quasi-isomorphic to the algebra Cl1,1(k) := k[U,V ]

(U2=−1,V 2=1,UV=−V U) with U, V in
odd degree and zero differential. The assignment

U 7→
(

0 1
−1 0

)
, V 7→

(
0 1
1 0

)
defines an isomorphism Cl1,1(k) ∼= M2(k). Since M2(k) is Morita equivalent to
k, we obtain a quasi-equivalence MF(kJx, yK, xy) ' Db(k). This is an instance
of Knörrer periodicity.

Theorem 10.4 (Dyckerhoff). The object kstab is a compact generator for MF(R,w).

Proof. In more detail, what is actually proved is that kstab is a classical gener-
ator for the category MF∞(R,w) of infinite rank matrix factorisations. It then
follows that kstab is a thick generator for the category MF(R,w). The proof is
a difficult piece of homological algebra and makes use of a homological version
of the Nakayama lemma.

Corollary 10.5 (Dyckerhoff). There is a quasi-equivalence of Z/2-graded dg
categories MF(R,w) ' perEnd(kstab).

Proof. This is an application of Keller’s theorem to the compact generator
kstab of MF∞(R,w). Putting A := End(kstab), we get a quasi-equivalence
MF∞(R,w) ' Ddg(A). This restricts to a quasi-equivalence perMF∞(R,w) '
per(A). Since MF(R,w) is idempotent complete, there is a quasi-equivalence
perMF(R,w) ' MF(R,w).
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In particular we know how to compute EndR(kstab)! Our earlier description
tells us that it is the Z/2-graded dga of polynomial differential operators on
R[θ1, . . . , θn], with differential given on a basis by dθi = xi and d( ∂

∂θi
) = wi,

where we write w =
∑
i wixi.

Remark 10.6. The ring R is the linear dual of the cosymmetric coalgebra C on
the variables x∗1, . . . , x∗n, and w is dual to a functional h : C → k. View C as a
curved coalgebra with zero differential and curvature given by k. Then matrix
factorisations are precisely finite rank twisted complexes over C. Tu proves that
Dyckerhoff’s generator ‘arises from Koszul duality’. More precisely, the algebra
EndR(kstab) is quasi-isomorphic to ΩC, and Dyckerhoff’s equivalence is in fact
a Koszul duality equivalence [Tu14].

The dga EndR(kstab) is a very computable invariant, and the identification
of MF(R,w) as perfect modules over it is a powerful theorem. Dyckerhoff uses
it to give a quick conceptual proof of Knörrer periodicity, and a proof that if w
is a quadratic form then its category of matrix factorisations is the category of
perfect modules over the associated Clifford algebra. For the rest of the talk,
we will focus on Dyckerhoff’s main application to Hochschild theory.

One can define the Hochschild (co)homology of a ring or more generally a
dg algebra. Thinking of a dg category as a many-object dg algebra, one can
make analogous definitions. If C is a dg category, then it has an enveloping dg
category Ce := C⊗Cop. The category of right modules over Ce is the same as the
category of C-bimodules. This is a perfectly good abelian category and one can
define Tor and Ext functors via the usual machinery of projective resolutions.
One can then define the Hochschild homology and cohomology of C as

HH∗(C) := Ext∗Ce(C, C)

HH∗(C) := TorC
e

∗ (C, C)

Just like for usual Hochschild (co)homology, one can compute these using bar
complexes.

Back to the situation at hand, let A be the endomorphism dga of kstab.
Dyckerhoff proves that there is a quasi-equivalence

MF(R⊗̂R, w̃) ' per(Ae)

where w̃ is the matrix factorisation 1 ⊗ w − w ⊗ 1. Note that the completed
tensor product R⊗̂R is isomorphic to kJx1, . . . , x2nK. Across this equivalence,
the module A corresponds to the matrix factorisation ∆stab, where ∆ is the
(R⊗R)/w̃-bimodule R.
Remark 10.7. The dg category MF(R⊗̂R, w̃) can be identified with the derived
internal endomorphism dg category of the dg category MF(R,w). This fits with
Toën’s interpretation of Hochschild cohomology as derived endomorphisms of
the identity bimodule.
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One can explicitly compute the endomorphism dga of ∆stab, which leads us
to the following theorem:

Theorem 10.8 (Dyckerhoff). The Hochschild cohomology of the Z/2-graded dg
category MF(R,w) is concentrated in even degree, where it is the Milnor algebra

R/

(
∂w

∂x1
, . . . ,

∂w

∂xn

)
.

Similarly, one can compute the Hochschild homology of A as a morphism
complex in MF(R⊗̂R,−w̃), and doing this one obtains the following:

Theorem 10.9 (Dyckerhoff). The Hochschild homology of MF(R,w) is the
Milnor algebra of w, concentrated in degree n, the Krull dimension of R.

Remark 10.10. This should be a manifestation of the fact that MF(R,w) is a
n-Calabi-Yau dg category.

{hhderinv}
Remark 10.11. If C is a dg category, then there are isomorphisms

HH∗(C) ' HH∗(perC)
HH∗(C) ' HH∗(perC)

The first is due to Keller and the second is due to Lowen and Van den Bergh15.
In particular, there are isomorphisms

HH∗(A) ' HH∗(MF(R,w))

HH∗(A) ' HH∗(MF(R,w))

Dyckerhoff makes use of the first.

Remark 10.12. Let k[u, u−1] be the graded Laurent polynomial ring, where u
has degree 2. Then a Z/2-graded k-linear dg category is the same thing as a
Z-graded k[u, u−1]-linear dg category: note that a Z/2-graded complex X0←→X1

is the same thing as a 2-periodic Z-graded complex · · · → X0 → X1 → X0 →
X1 → X0 → · · · . Then a 2-periodic complex is the same thing as a complex
over k[u, u−1], with the action of u giving the periodicity isomorphisms. There is
an obvious algebra map k → k[u, u−1], and by restriction along this map we can
view a Z/2-graded dg category as a Z-graded dg category. In particular, if C is
a Z/2-graded dg category, it has two different kinds of Hochschild cohomology:
firstly HH∗k[u,u−1](C), where we work over the base ring of Laurent polynomials,
and HH∗k(C), where we work over the base ring k. There is no need for
these to agree! Next week we will see that HH∗k(MF(R,w)) is a (generically
nontrivial) quotient of HH∗k[u,u−1](MF(R,w)).

15The chief difficulty in proving this for cohomology is that HH∗ is not a functor, since
Ext∗(C, C) is contravariant in the first variable and covariant in the other.
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11 Loose ends
Let k be an algebraically closed field of characteristic zero, R = kJx1, . . . , xnK
and w ∈ mR defines an isolated singularity. Regard MF(R,w) as a Z-graded
dg category, by cobase change along the forgetful functor induced by the map
k → k[u, u−1].

Theorem 11.1 (Keller). When MF(R,w) is viewed as a Z-graded dg category,
HH0(MF(R,w)) is the algebra Mw/w.

The algebra Tw := Mw/w is the Tjurina algebra of the singularity R/w.
When w is a quasi-homogenous singularity, one has Tw ∼= Mw, since w is con-
tained in the ideal

(
∂w
∂x1

, . . . , ∂w∂xn

)
by Euler’s theorem on homogenous functions.

Proof sketch. One first develops a theory of singular Hochschild cohomol-
ogy for rings, and in the situation of interest one has isomorphisms

HH0(Ddg
sg )(R/w) ∼= HH0

sg(R/w) ∼= HH0(R/w).

One can compute the zeroth Hochschild cohomology of R/w to be the Tjurina
algebra by a direct computation.

Note that due to the existence of Knörrer periodicity, singularities of dif-
ferent dimensions may have isomorphic Tjurina algebras. However, when the
dimension is fixed, the Tjurina algebra is a complete invariant of the singularity:

Theorem 11.2 (Mather–Yau; cf. [GP17]). Let w1, w2 ∈ mR define isolated
singularities. Then R/w1

∼= R/w2 if and only if Tw1
∼= Tw2

.

As stated the theorem is false in characteristic p - consider f := xp+1 + yp+1

and f+xp. However a modified version is true. The Milnor algebra also classifies
complete local isolated singularities, up to a different notion of equivalence.

Corollary 11.3. Let w1, w2 ∈ mR define isolated singularities. Then R/w1
∼=

R/w2 if and only if the Z-graded dg categories MF(R,w1) and MF(R,w2) are
quasi-equivalent.

Similarly, if the wi are quasi-homogenous, then the quasi-equivalence type
of the Z/2-graded dg category MF(R,wi) is a complete invariant.

In preparation for the next talk we will need some preliminaries on relative
singularity categories, which we take from [KY18]. Let R be any commutative
Gorenstein ring and M any MCM R-module. Recall that we regard the endo-
morphism algebra A := EndR(R ⊕M) as a noncommutative partial resolution
of R. Note that A comes with an idempotent e = idR and the quotient A/AeA
is isomorphic to EndR(M), the stable endomorphism algebra of M (i.e. the en-
domorphism algebra of M in the stable category MCM(R)). Recall that if T is
a triangulated category then T ω denotes its idempotent completion.
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Proposition 11.4. There exists a connective differential graded algebra B and
a triangle functor per(B)→ ∆R(A)ω which sends B to M . Moreover if A has
finite global dimension (i.e. if it is a noncommutative resolution of R) then this
functor is a triangle equivalence.

In fact, one can compute B as a sort of derived quotient of A by e: if Ã→ A
denotes a dga resolution of A then there is a quasi-isomorphism Ã/ÃeÃ ' B.
In particular this implies that H0(B) ∼= A/AeA.
Remark 11.5. In fact, B literally is the derived quotient of A by e, in the sense
of [BCL18]. This description shows that D(A) fits into a recollement

D(B)→ D(A)→ D(R)

and one can use this recollement to prove the theorem.
Suppose now that R is a complete local isolated hypersurface singularity.

This is not strictly necessary, but it simplifies things: in particular it ensures
that Dsg(R) is idempotent complete and hom-finite, and in particular A/AeA
is a finite dimensional algebra.

Proposition 11.6. If M is nonzero in Dsg(R), then there is a surjective tri-
angle functor Σ : per(B) → Dsg(R). If A has finite global dimension then the
kernel of Σ is the category Dfd(B), the category of dg B-modules N whose co-
homology has finite total dimension (i.e. only finitely many HiN are nonzero,
and they are all finite dimensional) and we hence obtain a triangle equivalence

per(B)

Dfd(B)

'−→ Dsg(R).

Proof idea. Existence of the functor comes from composing the map from per(B)
with the natural projection ∆R(A)ω → Dsg(R)ω ' Dsg(R). Surjectivity follows
from a theorem of Takahashi saying that singularity categories of isolated sin-
gularities have no nontrivial thick subcategories.

Remark 11.7. Implicit in the statement of the theorem is that, when A has finite
global dimension, every object in Dfd(B) is perfect. This is not necessarily true
when A has infinite global dimension.

{kycor}
Corollary 11.8. If R admits a noncommutative resolution A, then there exists
a differential graded algebra B and a triangle equivalence

per(B)

Dfd(B)
'Dsg(R).

One can compute B as the derived quotient of A by an idempotent.

Remark 11.9. In fact, one can show that, if Ri are two complete local iso-
lated hypersurface singularities of the same dimension, with associated dgas
Bi coming from an irreducible module Mi, that R1

∼= R2 if and only if there
is a quasi-isomorphism B1 ' B2. To do this it is enough to show that the
quasi-isomorphism class of B recovers the quasi-equivalence class of Dsg(R). In
fact Dsg(R) can be described as the category of perfect modules over a certain
localisation of B, as in [Boo20].
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12 Deformations of Kleinian singularities (Cal-
lum B.)

This section mostly follows [KY18, §9]; the main result is originally due to
Crawford [Cra20]. In this section we’ll work over C. If Q is a quiver, we denote
by Q̄ its double, which has for every arrow a : i → j of Q an opposite arrow
a∗ : j → i. If Q is a finite quiver, the preprojective algebra of Q is the
algebra Π(Q) obtained as the path algebra CQ̄ of the doubled quiver modulo
the relation

∑
a[a, a∗] = 0. Label the vertices of Q by 1, . . . , n. A weight is

a vector λ ∈ Cn. The deformed preprojective algebra is the quotient of
CQ̄ by the deformed preprojective relations

∑
a ei[a, a

∗]ei = λiei, one for each
i. Clearly Π0(Q) ∼= Π(Q).

A Kleinian singularity is a quotient of C2 by a finite subgroup of SL2(C).
They are isolated hypersurface singularities, and they have a minimal resolution
whose exceptional locus is a tree of rational curves, linked in an ADE configu-
ration. All ADE Dynkin diagrams can be obtained in this way, and each such
diagram corresponds to a unique Kleinian singularity.

Crawley-Boevey and Holland [CBH98] constructed noncommutative deforma-
tions of Kleinian singularities using deformed preprojective algebras, according
to the following recipe. Fix a Kleinian singularity R. Let Q be an arbitrary
quiver whose underlying graph is the affine Dynkin diagram of the Dynkin type
of R. Choose an extending vertex e0 of Q and label the other vertices 1, . . . , n.
Fix a weight λ on Q. The ring e0Πλ(Q)e0 is then a noncommutative deformation
of R: indeed if λ = 0 then it is isomorphic to R.

We will study the singularity category of e0Πλ(Q)e0 via the method of 11.8.
Crawley-Boevey and Holland prove that Πλ(Q) has finite global dimension, so
we need to find a dga resolution Ã → Πλ(Q), take the quotient B := Ã/Ãe0Ã,
and then the singularity category of e0Πλ(Q)e0 will be the triangle quotient
per(B)/Dfd(B). Our resolution will be given by a derived version of the pre-
projective algebra.

Let Q be any finite quiver. Let Q̃ be the graded quiver consisting of Q̄
placed in degree zero, along with a loop ti in degree −1 at each vertex i.
The derived preprojective algebra is the dg algebra Π(Q) whose under-
lying graded algebra is CQ̃, and whose differential satisfies d(a) = d(a∗) = 0
and d(ti) =

∑
a ei[a, a

∗]ei. The deformed derived preprojective algebra
Πλ(Q) is the same, but the differential on ti is modified to be the sum d(ti) =∑
a ei[a, a

∗]ei − λiei. Clearly we have an isomorphism H0(Πλ(Q)) ∼= Πλ(Q).
Observe that Πλ(Q) is a cofibrant dga (i.e. its underlying graded algebra is free
and the differential is upper-triangular).
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Remark 12.1. The dga Πλ(Q) is a deformed 2-Calabi–Yau completion of the
path algebra CQ, in the sense of Keller [Kel11]. More generally, to construct
the n-CY completion one puts a∗ in degree 2 − n and ti in degree 1 − n. The
differential remains the same. Deformed n-CY completions are more subtle;
we remark that Ginzburg dgas of quivers with potential are examples of 3-CY
completions (the potential should be thought of as the deformation parameter).

Proposition 12.2 (Hermes [Her16]). If Q is a finite quiver without oriented
cycles and not a Dynkin quiver then the projection map Π(Q) → Π(Q) is a
quasi-isomorphism.

In other words, when λ = 0 the derived preprojective algebra is a resolution
of the usual preprojective algebra.
Remark 12.3. If Q is a finite quiver without cycles then Π(Q) is finite dimen-
sional precisely when Q is of Dynkin type; since finite dimensional algebras
cannot be 2CY, the conclusion of the proposition cannot hold when Q is a
Dynkin quiver. In this case, Hermes constructs a minimal model of Π(Q). If Q
is a finite quiver without cycles then Π(Q) is Koszul precisely when Q is not of
Dynkin type; one can prove the proposition using this.

By filtering away the λi, one can prove the above proposition for the de-
formed derived preprojective algebra:

Proposition 12.4 (Kalck–Yang). If Q is a finite quiver without oriented cy-
cles and not a Dynkin quiver and λ is a weight on Q then the projection map
Πλ(Q)→ Πλ(Q) is a quasi-isomorphism.

Proof. Introduce a secondary Adams grading on Πλ(Q) by putting a and a∗ in
degree −1, ei in degree 0, and ti in degree −2. This secondary grading induces a
filtration on Πλ(Q) and Π(Q) by Adams path length. One compares the induced
spectral sequences for Πλ(Q) and for Π(Q) and finds that the cohomology of
Πλ(Q) must be concentrated in degree zero, and hence the result holds.

Let’s return to the Kleinian situation. The above gives us an equivalence

Dsg(e0Πλ(Q)e0) ' per(B)

Dfd(B)

where B is the dga Πλ(Q)/(e0). Recall that Q was an affine Dynkin quiver, with
extending vertex 0; let Q′ be the full subquiver on the vertices 1, . . . , n and λ′
the corresponding weight on Q′. It is not too hard to see that B is isomorphic
to Πλ′(Q′). This dga is still rather mysterious, so we would like to pass to a
simpler model to remove the noncommutative data.

Let Q′λ′ be the full subquiver of Q′ on those vertices i with λ′i = 0. There is
a natural surjection Πλ′(Q′) → Π(Q′λ′) which Crawford proves to be a quasi-
isomorphism as long as λ is quasi-dominant, meaning that each of the λ′i
either has positive real part, or zero real part and nonnegative imaginary part.
Since one may choose λ to be quasi-dominant without affecting the isomorphism
type of the noncommutative deformation, we may assume that this is the case.

29



Observe that Q′λ′ must be a disjoint union of Dynkin quivers Q1, . . . , Qs; let
R1, . . . , Rs denote the corresponding Kleinian singularities. The above argu-
ments tell us that per(Π(Qj))/Dfd(Π(Qj)) is triangle equivalent to the singu-
larity category of Rj . We hence have triangle equivalences

Dsg(e0Πλ(Q)e0) ' per(Π(Q′λ′))

Dfd(Π(Q′λ′))
'

s⊕
j=1

per(Π(Qj))

Dfd(Π(Qj))
'

s⊕
j=1

Dsg(Rj)

exhibiting the singularity category of the noncommutative deformation as a
sum of singularity categories of Kleinian singularities.

13 Hochschild cohomology via Koszul duality
Recall that I mentioned, as an aside, that matrix factorisation categories were
categories of twisted modules over certain curved dg (co)algebras. I’ll expand
on this before describing how to recover Dyckerhoff’s results on Hochschild
cohomology from this perspective. I’ll follow [CT13, Tu14].

Definition 13.1. A curved dg algebra is the data of

• A graded algebra A

• A degree 1 derivation d : A→ A

• An element h ∈ A2

such that

• d(h) = 0

• d2(x) = [h, x] = hx− xh for all x ∈ A

We call d the differential and h the curvature element.

Example 13.2. If A is a dg algebra, then it is naturally a curved dg algebra with
zero curvature.

Example 13.3. If A is a graded algebra and h ∈ Z(A) is of degree 2 then the
pair (A, h) is a curved dg algebra with zero differential (a.k.a. a curved graded
algebra).

Example 13.4. Curved dg coalgebras are defined similarly: they are graded
coalgebras C with a coderivation d and a curvature functional h : C → k. If C
is a curved dg coalgebra then one can define its cobar construction ΩC, which is
a curved dg algebra. If C was coaugmented then ΩC is a dg algebra. Similarly
if A is a dg algebra it has a bar construction BA which is a conilpotent curved
dg coalgebra16.

16Defining a bar construction for curved dg algebras is possible, but a little more subtle,
since one can no longer expect it to be a conilpotent curved coalgebra.
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A morphism of curved algebras A→ B is a pair (f, b) where f : A→ B is a
map of graded algebras, and b ∈ B is a degree 1 element satisfying the formulas

• f(da) = d(fa) + [b, fa]

• f(hA) = hB + db+ b2.

Morphisms compose by putting (g, b)(f, a) = (gf, b + g(a)). Observe that the
inclusion of dg algebras into curved dg algebras is faithful but not full; there are
more curved maps than uncurved maps between dg algebras.

A (left) dg module over a curved dg algebra is a graded A-moduleM with a
differential d of degree 1 satisfying the Leibniz rule with respect to the A-action,
such that d2(m) = hm. Note that A need not be a module over itself! These
assemble into a dg category of dg-A-modules - the hom-complexes are defined
exactly as in the uncurved case. This has an important full subcategory Tw(A)
of finitely generated twisted modules, whose objects are those A-modules whose
underlying graded A-modules are free of finite rank over the underlying graded
algebra of A.
Remark 13.5. If A is a dga, then Tw(A) is a model for the pretriangulated
hull of the one-object dg category A. A twisted module can be described as a
twisting of the free module A⊕n.
Example 13.6. Let R be any commutative ring and let w ∈ R be any element.
Define a curved Z/2-graded algebra Rw by:

• The underlying graded algebra of Rw is R, concentrated in even degree.

• Rw has zero differential and the curvature element is given by w.

Then Tw(Rw) is precisely the Z/2-graded dg category MF(R,w).
The main question of this talk: is there a good theory of Hochschild (co)homology

HH ′ for curved dg algebras, such that HH(Tw(A)) ' HH ′(A)? This would
reduce the computation of Hochschild (co)homology of matrix factorisation cat-
egories to that of HH ′ of certain curved graded algebras.

Fix an abelian grading group G; note that there’s a unique map Z→ G. From
now on, our curved dg algebras will be G-graded. If A is a curved dg algebra, it
has a Hochschild complex HH∗(A). As a graded vector space, it is the product∏∞
i=0 Hom(A⊗i, A). Note that this is the direct product totalisation of a Z×G-

graded vector space and hence has a G-grading. The Hochschild differential
sends a degree k cochain f to the sum

(a1 . . . , al) 7→
∑

j

k≤l

(−1)j+|a1|+···+|aj |ml−k+1(a1, . . . , f(aj+1, . . . , aj+k), . . . , al)

+
∑
i

(−1)|f |+|a1|+···+|ai|f(a1, . . . ,ml−k+1(ai+1, . . . , ai+l−k+1), . . . , al)

where m0() = h, m1(a) = da, and m2(a, b) = ab.
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There is a similar definition for HH∗(A) as the totalisation of the bigraded
vector space A⊗Ai equipped wih a similar differential.

Proposition 13.7. Let A be a curved graded algebra. Then both HH∗(A) and
HH∗(A) vanish.

Proof sketch. A spectral sequence argument reduces to the case where A is a
curved algebra with zero multiplication, and one can compute HH(A) explicitly
in this situation.

So usual HH is not a good invariant for our purposes. We introduce a
modified version.

Definition 13.8 ([PP12]). Let A be a curved dg algebra. The compactly
supported Hochschild cohomology complex is the G-graded vector space
HH∗c (A) :=

⊕
i Hom(A⊗i, A) equipped with the same Hochschild differential.

Similarly, theBorel–Moore Hochschild homology complex is theG-graded
vector space HHBM

∗ (A) :=
∏
i(A ⊗ Ai) equipped with the Hochschild differen-

tial.

Proposition 13.9. If A is a connective Z-graded finite dimensional curved dg
algebra then the natural maps

HH∗c (A)→ HH∗(A)

HH∗(A)→ HHBM
∗ (A)

are quasi-isomorphisms.

Proof idea. Under the hypotheses, HH∗(A) is the completion of HH∗c (A) with
respect to the Z-grading.

Proposition 13.10. Let R = kJx1, . . . , xnK and w ∈ mR defining an isolated
singularity. Let Rw be the associated Z/2-graded curved algebra whose twisted
modules are the matrix factorisations of w. Then there are isomorphisms

HH∗(Rw) ∼= Mw

HH∗(Rw) ∼= Mw[dimR].

The proof is a computation. At least for homology, one can deduce this from
some general theory, as we now describe. The curved graded algebra Rw is the
linear dual of the curved graded coalgebra Cw := k[y1, . . . , yn] with curvature
functional w∗. We have a quasi-equivalence of Z/2-graded dg categories

Tw(Rw) ' Tw(Cw)

where Tw(Cw) denotes the category of finitely generated twisted comodules.
Since R was a local ring, it is augmented, and hence Cw is coaugmented. Hence
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it has a Koszul dual dg algebra Ω(Cw), and general results in Koszul duality
give us a quasi-equivalence of Z/2-graded dg categories

Tw(Cw) ' per(ΩCw).

Putting these quasi-equivalences together, we get a quasi-equivalence of Z/2-
graded dg categories

MF(R,w) ' per(ΩCw).

Remark 13.11. ΩCw is quasi-isomorphic to the dga constructed by Dyckerhoff
defined in terms of polynomial differential operators.

Hochschild (co)homology is invariant under quasi-equivalences, and derived
Morita invariant by 10.11, and so we get quasi-isomorphisms17

HH∗(MF(R,w)) ' HH∗(ΩCw)

HH∗(MF(R,w)) ' HH∗(ΩCw).

Tu then proves that HH∗(ΩCw) is naturally isomorphic to the linear dual
of HHBM

∗ (Rw), using the intermediate notion of the Hochschild complex of a
(curved) coalgebra. Heuristically, this is because the linear dual of HH∗(Cw)
is HHBM

∗ (Rw), since to get from left to right we pass the linear dual inside the
coproduct (turning it into a product), through the tensor products, and finally
C∗w
∼= Rw.

Since HHBM
∗ (Rw) is finite dimensional, it is isomorphic to its own dual, and

it follows that HH∗(MF(Rw)) ' HHBM
∗ (Rw), without doing any computation.

I’m not aware if the same strategy works for HH∗.
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