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This is the second half of a joint talk with Tim Weelinck. Tim introduced the concept of
spectral sequences, and did some informal computations, including a spectral sequence proof
of the Snake Lemma. Now it’s time to make some of the ideas more rigorous, especially the
intuitive notion of ‘convergence’. Hopefully these notes hold up reasonably as a standalone
work. We’ll follow Weibel in [2].

1 Technicalities
Before getting into some of the details, it’s important to be aware that there are two

different conventions for spectral sequences: we can either index them homologically, or
index them cohomologically. Of course these two notions are the same up to some sign
conventions, but sign conventions are the bane of every homological algebraist. Vakil uses
cohomological indexing, but Weibel prefers homological indexing.

Definition 1.1. Let A be an abelian category. A homologically indexed spectral
sequence E is a collection of objects Er

pq of A for r ≥ m ∈ N and p, q ∈ Z and maps
dr

pq : Er
pq → Er

p−r,q+r−1. If we fix an r, the doubly Z-graded object Er is referred to as a
page (or sheet). Usually m ∈ {0, 1, 2}. The objects and maps are required to satisfy:

i) The dr are differentials. These turn each page Er into a collection of chain complexes
that have ‘slope’ − (r+1)

r .

ii) Er+1
pq
∼= Hpq(Er).

We see that we can recover the whole of the spectral sequence from just the Em page,
since we can recover the Ei+1 page from the Ei page by taking homology. It’s useful to
draw out the first few pages here: the differentials d0 go down and the d1 go to the left.
The d2 differentials carry out a Knight’s move - they go two steps left and one step up. The
higher differentials act like generalised Knight’s moves.

The total degree of the term Er
pq is p+q, so that the differentials always decrease the total

degree by 1. We may also define a cohomologically indexed spectral sequence Epq
r to

simply be a homological spectral sequence Er
pq with the terms reindexed as Epq

r = Er
−p,−q.

We’ll always indicate whether a spectral sequence is homological or cohomological by the
placement of the pq subscript.
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A homological spectral sequence E is said to be first quadrant if Er
pq is only nonzero

whenever (p, q) is in the first quadrant (i.e. p ≥ 0 and q ≥ 0). Let Er
pq be a first quadrant

spectral sequence, fix p and q, and consider the sequence {Er
pq : r ≥ m}. We see that even-

tually this sequence must stabilise, since the differentials entering and leaving Er
pq become

the zero map. Call this stable value E∞pq . We say that the spectral sequence Er
pq abuts to

E∞pq .
Remark 1.2. If A satisfies Grothendieck’s axioms AB4 (A is cocomplete, and the coproduct
of monomorphisms is a monomorphism) and AB4∗ (A is complete, and the product of
epimorphisms is a epimorphism) then we can define the E∞ page for any spectral sequence.
These conditions hold for example if A is mod-R for some ring R, but not necessarily if A is
a category of sheaves. However, we’ll be interested only in first quadrant spectral sequences.

Definition 1.3. A first quadrant homological spectral sequence E is said to converge to
a graded object H∗, denoted by Er

pq ⇒ Hp+q, if for each n we have a finite filtration

Hn = FtHn ⊇ Ft−1Hn ⊇ · · · ⊇ FsHn = 0

such that the quotients FpHp+q/Fp−1Hp+q are isomorphic to E∞pq .

What’s the intuition behind this definition? Certainly we could simply say that E
converges to

⊕
p+q=n E

∞
pq and be done with it. But this is too restrictive - really we should

only be able to compute the Hn up to extension. For example, if we have a first quadrant
spectral sequence with E∞10 = Z/2 = E∞01 , this does not determine whether H1 ‘should’
be Z/4 or the Klein 4-group. So the same spectral sequence can converge to two different
things. However there are theorems (e.g. [2], 5.2.12) that can help establish some form of
uniqueness.

Definition 1.4. A spectral sequence Er
pq is said to collapse at M if there is at most one

nonzero row or column in EM
pq , and all differentials are zero (this is automatic if M ≥ 2).

Many spectral sequences found ‘in the wild’ collapse at the E1 or E2 pages. If a spectral
sequence collapses, then we can read off its limit: it’s clear that E∞pq = EM

pq , so Hn is simply
the unique EM

pq with p + q = n. In this case the limit is unique. It’s clear that collapse is
not a necessary condition for us to be able to ‘read off the unique limit’: it’s sufficient that
every diagonal has at most one nonzero entry.

If we want to get off the ground with proving things, we’ll need a couple of convergence
results. Here’s the most important:

Theorem 1.5 ([2], 5.6.1). Let C be a first-quadrant double complex. We can define a spectral
sequence ∨E with ∨E0

pq = Cpq with the obvious vertical differentials. Then ∨E converges to
the homology H∗(C) of the total complex of C.

Observe that in the situation above we can also define another spectral sequence <E
with <E0

pq = Cqp (note the index flip!) and horizontal differentials.

Proposition 1.6 ([2], 5.6.2). Let C be a first-quadrant double complex. Then <E also
converges to H∗(C).

Remark 1.7. The proof is exactly the same as the proof of Theorem 1.5.
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So now we have two ways to compute the same thing: if C is a double complex then we
may compute H∗(C) by the two different spectral sequences ∨E and <E. This often provides
interesting results.
Remark 1.8. Note that a double complex is the same thing as a graded complex. We can
play the same game above if the complex C is only filtered, not graded. Of course, things
get more complicated!

2 Example: Balancing of Tor
If R is a ring and M,N are (right, left) R-modules, we can define two functors

TorR
∗ (M,−) : = L∗(M ⊗R −) : R-mod→ Ab

TorR
∗ (−, N) : = L∗(−⊗R N) : mod-R→ Ab

To say that Tor is balanced is to say that TorR
∗ (M,−)(N) ∼= TorR

∗ (−, N)(M), naturally in
M and N . There’s an easy proof of this using spectral sequences:

Take projective resolutions P• → M and Q• → N , and tensor them together to get a
first-quadrant double complex P• ⊗R Q•. From P• ⊗R Q• we get two associated spectral
sequences, ∨E and <E. Using the Universal Coefficient Theorem for homology, it’s not hard
to check that

∨E2
pq =

{
Hp(P• ⊗R N) q = 0
0 else

and <E2
pq =

{
Hp(M• ⊗R Q) q = 0
0 else

So both spectral sequences collapse at the E2 page, and we see that

TorR
p (−, N)(M) = Hp(P• ⊗R N) = Hp(P• ⊗R Q•) = Hp(M• ⊗R Q) = TorR

p (M,−)(N)

3 Some Examples of Spectral Sequences
Many more examples can be found at the nLab’s entry on spectral sequences, available at
https://ncatlab.org/nlab/show/spectral+sequence. Lots of our examples will come
from the world of sheaf theory.

3.1 The Grothendieck Spectral Sequence
Introduced in the Tôhoku paper, this is one of the most useful spectral sequences, which
computes the derived functor of a composition GF in terms of the derived functors of F
and of G. To be precise, let A F−→ B G−→ C be a diagram of abelian categories and additive,
left-exact functors. Suppose that the following conditions are satisfied:

i) A and B have enough injectives.

ii) F takes F -acyclic objects to G-acyclic objects.

Then for each A ∈ A there is a spectral sequence E (the Grothendieck spectral se-
quence), whose E2 page is Epq

2 = (RpG ◦RqF )(A), converging to Rp+q(GF )(A). So if we
know the right derived functors of F,G we can compute the right derived functors of GF .
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Many special cases of the Grothendieck spectral sequence are important enough to get
their own name:

i) Let X and Y be topological spaces and f : X → Y be a continuous map. Consider
the diagram Ab(X) f∗−→ Ab(Y ) ΓY−−→ Ab. Note that the composition ΓY ◦ f∗ is just
ΓX . The associated Grothendieck spectral sequence is the Leray spectral sequence
of a sheaf F on X, whose E2 page is Hp(Y,Rqf∗F)⇒ Hp+q(X,F).

ii) Now let G be a group, N a normal subgroup and A a G-module. Consider the invari-
ants functor A 7→ AG. Then we may compute AG in two steps as AG = (AN )G/N .
The Grothendieck spectral sequence of the functors A 7→ AN and A 7→ AG/N is called
the Hochschild–Serre spectral sequence. Recalling that group cohomology is ex-
actly the derived functor of the invariants functor, we see that the Hochschild–Serre
spectral sequence is the spectral sequence whose E2 page is

Epq
2 = Hp(G/N,Hq(N,A))⇒ Hp+q(G,A)

So if we know the group cohomology of some ‘pieces’ of G, we can put this together
to get the group cohomology of G.

iii) Let X be a scheme, with structure sheaf O. Recall that given two O-modules F ,
G, we can define a sheaf HomO(F ,G) with HomO(F ,G)(U) = HomO|U (F|U ,G|U ).
Moreover, we may define another sheaf Ext as the right derived functor of Hom. Note
that HomO(F ,G) is the set of global sections of HomO(F ,G). Putting this together
we obtain a spectral sequence whose E2 page is

Hp(X,ExtqO(F ,G))⇒ Extp+q
O (F ,G)

the local-to-global Ext spectral sequence.

3.2 The Leray-Serre Spectral Sequence
Let’s say we have a Serre fibration F → E → B of topological spaces (e.g. a fibre bundle).
There’s a long exact sequence linking the homotopy groups of the three spaces F,E,B. But
is there an analogous object for cohomology? Assuming that B is simply-connected, Serre
proved that there is a spectral sequence with E2 term Epq

2 = Hp(B,Hq(F )) ⇒ Hp+q(E).
A similar statement holds if B is not simply-connected and we take into account the action
of π1B on the cohomology of the fibres.

The Leray-Serre spectral sequence has a generalisation to any Eilenberg-Steenrod coho-
mology theory, the Atiyah-Hirzebruch spectral sequence. If K is any generalised co-
homology theory, the Atiyah-Hirzebruch sequence has E2 page Hp(B,Kq(F ))⇒ Kp+q(E).
If we take the fibration pt → X → X then we recover the K-cohomology of X in terms of
the ordinary cohomology with coefficients in the graded ring K∗(pt).

3.3 The Künneth Spectral Sequence
Lots of standard theorems from algebraic topology have ‘spectral counterparts’. Recall that
if X and Y are any two topological spaces, and k is a field, then there is an isomorphism⊕

i+j=n

Hi(X, k)⊗k Hj(Y, k) ∼= Hn(X × Y, k)
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More generally, the Künneth Theorem tells us that if we use homology with coefficients in
a principal ideal domain R, we recover the following short exact sequence:

0→
⊕

i+j=n

Hi(X, R)⊗R Hj(Y, R)→ Hn(X × Y, R) →
⊕

i+j=n−1

TorR
1 (Hi(X, R), Hj(Y, R))→ 0

Even more generally, if R is any commutative ring, there is a Künneth spectral sequence
with E2 page

E2
pq =

⊕
i+j=q

TorR
p (Hi(X,R), Hj(Y,R)) ⇒ Hp+q(X × Y,R)

which, in the situations above, collapses to yield the given relation.

There are also ‘spectral versions’ of the Seifert-Van Kampen Theorem and the Hurewicz
theorem, although these are more complicated.

3.4 The Cartan-Leray Spectral Sequence
Let X be a pointed connected topological space and G a group acting on X freely and
properly, i.e.

i) For all x ∈ X, the stabiliser Stab(x) ⊆ G is trivial.

ii) Every x ∈ X has a neighbourhood U with gU ∩ U = ∅ for all g 6= e.

Then there is a spectral sequence, the Cartan-Leray spectral sequence, with E2 page
E2

pq = Hp(G,Hq(X)) ⇒ Hp+q(X/G). For example, if X satisfies some mild point-set
conditions (connected and locally-simply-connected) thenG = π1(X) acting on the universal
cover X̃ satisfies the hypotheses above. Since X̃/G = X, the spectral sequence becomes
Hp(π1(X), Hq(X̃))⇒ Hp+q(X).

3.5 The Mayer-Vietoris Spectral Sequence
Let X be a topological space, F a sheaf on X, and U a cover of X. Say that U is F-acyclic
if F is acyclic on any finite intersection of elements from U . Then Leray’s Theorem says
that if U is an F-acyclic cover, then the Čech cohomology Hn(U ,F) is the same as the sheaf
cohomology Hn(X,F).

But what if U is not F-acyclic? In general, there is a spectral sequence with E2 page
Epq

2 = Hp(U ,H q(F))⇒ Hp+q(X,F), where H q(F) is the presheaf on X that takes U to
Hq(U,F|U ). If U was already F-acyclic, then the spectral sequence collapses at the E2 page
to yield Leray’s Theorem. If we take U to consist of just two open sets, then we recover the
Mayer-Vietoris sequence for sheaf cohomology.

3.6 The Hodge-de Rham Spectral Sequence
Also called the Frölicher spectral sequence. Let X be a complex manifold, and let Ωq

be the sheaf of holomorphic q-forms on X (the complex q-forms whose coefficients are
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holomorphic functions). If X is compact Kähler (e.g. a smooth projective variety over C),
then we have the Hodge decomposition⊕

p+q=l

Hp(X,Ωq) = H l(X,C)

Can we recover a similar statement if X is not compact Kähler?

Pick (complex) local coordinates z1, . . . , zn. Write zj = xj + iyj and define vector fields,
the Wirtinger derivatives

∂

∂zj
: = 1

2( ∂

∂xj
− i ∂

∂yj
)

∂

∂z̄j
: = 1

2( ∂

∂xj
+ i

∂

∂yj
)

Note that a smooth function f on X is holomorphic precisely if all of the derivatives ∂
∂z̄j

(f)
vanish. We get associated complex differential forms

dzj : = dxj + idyj

dz̄j : = dxj − idyj

Then any complex differential 1-form is a linear combination, over the ring of smooth func-
tions on X, of such forms. For p, q ≥ 0 let Ωp,q (unfortunate but common notation!) be the
sheaf of complex differential (p+ q)-forms that are locally of the type

α1 ∧ · · · ∧ αp ∧ β1 ∧ · · · ∧ βq

where the αk are linear combinations of the dzj and the βk are linear combinations of the
dz̄j . It’s easy to see that the sheaf of complex differential n-forms is the sum ⊕p+q=nΩp,q.

There are boundary maps turning the collection Ωp,q into a (cohomological) double com-
plex. The cohomology in the q direction is the Dolbeault cohomology of X, written
Hp,q(X). It’s not a homotopy invariant of X, since it depends on the complex structure.
Dolbeault’s Theorem is a complex version of de Rham’s theorem that gives an isomor-
phism Hq,p(X) ∼= Hp(X,Ωq).

The total cohomology of Ωp,q is the de Rham cohomology with complex coefficients. Hence
we get a spectral sequence with E1 page Hp(X,Ωq)⇒ Hp+q(X,C). If X is compact Kähler,
this sequence collapses at the E1 page and we recover the Hodge decomposition.
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