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These are notes for a pair of talks for the Hodge Club about stable homotopy
theory. The notes are more expansive than what I’ll actually say. I’ll give a
quick introduction to the very basics, and then the first examples of stable
phenomena in topology. Later I’ll talk about a more modern approach in terms
of spectra, and explain how spectra relate to generalised cohomology theories.

1 The Basics
1.1 Homotopy
Let me first note that all spaces here will be pointed (i.e. equipped with a

basepoint). Maps will be basepoint-preserving. The category of pointed spaces
is denoted Top∗. Note that a pointed space is necessarily nonempty! We can
also think of Top∗ as the undercategory {∗} ↓ Top. Basepoints are really
crucial for what we want to do1, although I won’t mention them much. Just
remember that they’re there.

It’s worth mentioning what the coproduct in Top∗ is. The wedge product
X∨Y of two pointed spacesX,Y is the analogue of the disjoint union: we simply
take X t Y but identify the basepoints in each copy. For example S1 ∨ S1 is a
figure eight. We can also define the smash product X∧Y as (X×Y )/(X∨Y ).
We have Sn ∧ Sm = Sn+m.

Given maps f, g : X → Y , a homotopy from f to g is a mapH : X × [0, 1]→ Y
with H

∣∣
X×{0} = f and H

∣∣
X×{1} = g. We can think of H as interpolating con-

tinuously between f and g. If there is a homotopy from f to g then we say that
they are homotopic and write f ' g. For example if Y = Rn then any two
maps are homotopic via the straight-line homotopy

H(x, t) = (1− t) · f(x) + t · g(x)
1For example homotopy groups depend on the choice of basepoint. More importantly, some

of the theorems we’ll make use of (e.g. the Brown Representability Theorem) are false if we
drop the ’pointed’ assumption.
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Homotopy is an equivalence relation on maps and we denote the corresponding
quotient of Hom(X,Y ) by [X,Y ]. If we like, we can define a category hTop∗,
the homotopy category of pointed spaces2, with the same objects as Top∗
and morphism sets given by HomhTop∗(X,Y ) := [X,Y ]. Composition works as
normal, since f ' f ′ and g ' g′ implies that fg ' f ′g′. The category hTop∗ is
not a concrete category; this is a theorem of Freyd, proved in [3].

1.2 The Fundamental Group
Consider the set [S1, Y ], the set of homotopy classes of based loops in Y . This

set admits a group structure: if [γ] and [γ′] are homotopy classes of loops in Y
then their product is the homotopy class of the loop γ ·γ′ given by going around
γ and then going around γ′. Of course one needs to check that this operation
is well-defined, admits inverses3, et cetera.

The fundamental group of Y is the group π1(Y ) = [S1, Y ]. If A ⊆ X
one can also define relative groups π1(X,A) consisting of those maps which are
homotopic through homotopies that fix A. The relative groups will be important
for the long exact sequences in homotopy that we’ll use a little of later.
Example 1.2.1. We have π1(S1) = Z (homotopy classes of based loops in S1 are
completely described by their winding number), π1(S2) = 0 (any loop in S2 can
be shrunk to a point) and π1(S1 ∨ S1) = Z∗Z (so the fundamental group need
not be abelian)4.

The assignment X 7→ π1(X) is functorial. Moreover it’s homotopy invariant:
if two maps are homotopic then they induce the same map between fundamen-
tal groups. Two spaces X,Y are homotopy equivalent if there are maps
f : X ↔ Y : g such that fg = idY and gf = idX . A contractible space is one
that’s homotopy equivalent to a point. Using functoriality of π1 we can easily
see that homotopy equivalent spaces have isomorphic fundamental groups. The
converse is not true: for example ∗ and S2 have isomorphic fundamental groups,
but S2 is not contractible5.

The functor π1 commutes with both products and coproducts for reasonable6

spaces. Moreover it’s independent of choice of basepoint for path-connected
spaces (it’s clearly not for all spaces - e.g. S1 t S2).

2This category is the same as the localisation of Top∗ at the homotopy equivalences.
3The identity element is the constant loop S1 → ∗. The inverse of γ is ‘γ but in the

opposite direction’.
4In fact it’s true that for nice spaces π1(X ∨ Y ) ∼= π1(X)∗π1(Y ); this is a weak form of

the Van Kampen Theorem.
5We can see this either by computing π2 or using (co)homology.
6path-connected, locally contractible
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Finally, one can phrase the fact that [S1, Y ] is a group in a more sophisticated
manner: Suppose [f ], [g] are homotopy classes of loops in Y . Then the product
[f ][g] is the homotopy class of the map given by

S1 → S1 ∨ S1 → Y

where the map S1 → S1∨S1 is the folding map given by contracting an equator,
and the map S1 ∨ S1 → Y does f on the first copy and g on the second.

1.3 Higher homotopy groups
One can repeat the above constructions for all mapping sets [Sn, Y ] for n > 0
and hence obtain functors πn for all positive n. One can define π0(Y ) as the
set of connected components of Y , but this does not necessarily get a group
structure - we’ll see later that we can get around this in the stable world. It’s
also possible to define relative homotopy groups, and there’s an associated long
exact sequence for pairs.

An important property of the higher groups is that they are all abelian:
the best way to see this is to regard Sn = In/∂n, realise that composition is
equivalent to just placing each map in one half of In, and then simply switching
the maps around by a homotopy (see [4], pg. 340). This doesn’t work for S1

because there isn’t enough space to switch the maps around.

A map X → Y is a weak homotopy equivalence if it induces isomorphisms
on all homotopy groups. Clearly any homotopy equivalence is a weak homotopy
equivalence. Whitehead’s Theorem gives a partial converse and says that a
weak homotopy equivalence between CW complexes is a homotopy equivalence.
Weak homotopy equivalence is a stronger condition than simply having all ho-
motopy groups isomorphic: S2 × RP3 and S3 × RP2 have the same homotopy
groups, but are not weakly homotopy equivalent7 since there’s no map of spaces
witnessing this isomorphism.

The homotopy groups of spheres are very badly behaved, which is at first sur-
prising since spheres are ‘simple’ spaces8. For example, we have an isomorphism
π14(S3) = Z2×Z2×Z84. Historically, the first nontrivial example is π3S

2 = Z,
generated by the Hopf fibration. We’ll come back to spheres several times.

7They’re both 5-dimensional manifolds, and one is orientable and the other is not, so their
fifth homology groups must differ. So they’re not (weakly) homotopy equivalent.

8Of course spheres are only ‘simple’ in a homological sense. The corresponding notion for
homotopy is that of an Eilenberg-Mac Lane space; see 3.2.2, iv).
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1.4 Operations on spaces
The cone9 on X is the space CX := (X × [0, 1])/{(x, 1) : x ∈ X} a.k.a. a
cylinder on X with one end collapsed down. It’s contractible - we can con-
tract it to the vertex. Coning is functorial: given f : X → Y we can define
Cf : CX → CY by just using f levelwise (one needs to check continuity at the
vertex).

The suspension ΣX of X is the space (CX t CX)/X, or two cones on X
joined at the base (we can think of ‘suspending’ X between two points). A key
observation is that ΣX = S1 ∧X, and as a consequence we have ΣSn = Sn+1.
Suspending spaces is homotopically much more interesting since, unlike the
cone, the suspension is not usually contractible.

Suspension is also functorial, and the functoriality gives us the suspension
map σ : πnX → πn+1ΣX between homotopy groups, defined by the following
procedure:

Take [f ] ∈ πn(X). Then Σf : Sn+1 → ΣX. Taking homotopy classes we
get σ[f ] := [Σf ] ∈ πn+1(ΣX). This map is well-defined since a nullhomotopy
of f lifts to a nullhomotopy of Σf . It’s a homomorphism because Σ commutes
with ∨ - recall the definition of the group operation in terms of the folding map.
More generally, ∧ distributes over ∨.

The very first question we ask in stable homotopy theory is:

When is the map σ an isomorphism?

The answer cannot always be ‘yes’ - for example, if n = 1 and we pick a space
X with nonabelian fundamental group, then clearly σ cannot be an isomorphism
since π2(ΣX) is abelian. This is not just restricted to n = 1 either: πn(S1) = 0
for all n > 1, but there are infinitely many n with πn(S2) 6= 0. This surprising
result is in fact true for all spheres of dimension greater than 1: this is the
consequence of a theorem of Serre on torsion in homotopy groups.

If we consider (reduced) homology, then this question is uninteresting since
one can show that H̃nX ∼= H̃n+1ΣX. This is because we have excision for
homology. The lack of excision for homotopy groups is what makes stable
homotopy questions interesting.

9Technically we need to use the reduced cone - I’ll be lax about the difference between
reduced and unreduced things. The resulting things we get are homotopy equivalent anyway.
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Before we move on, we need to look at one more operation. The loopspace
ΩX of a space X is the space of based loops in X. It’s an h-group (i.e. a
group object up to homotopy - equivalently a group object in hTop∗) since we
can concatenate loops. The important property of loop spaces is that we have
an adjunction [ΣX,Y ] = [X,ΩY ]. The adjunction map sends f : ΣX → Y
to the map X → ΩY that sends a point x ∈ X to the loop f

∣∣
{x}×[0,1]. This

adjunction is actually an instance of a more general adjunction: if Y is a locally
compact Hausdorff space, then for any Z we can define a space Hom(Y,Z) by
equipping the set Hom(X,Z) with the compact-open topology. Then we have
an adjunction Hom(X ∧ Y,Z) = Hom(X,Hom(Y,Z)). Putting Y = S1 gives us
back the adjunction above.

Since ΩY is an h-group, the sets [X,ΩY ] all get the structure of groups.
Using the adjunction, this means that suspensions are h-cogroups, or cogroup
objects up to homotopy10. The cogroup structure is given by the fold map we
saw earlier. By the Eckmann-Hilton argument, a double loop space is an abelian
group object, and so [X,Ω2Y ] is always an abelian group. Abstractly, this is
why [Sn, Y ] is a group for n ≥ 1, and why it’s abelian for n ≥ 2.

2 Stabilisation
2.1 The Freudenthal Suspension Theorem
Definition 2.1.1. A space X is said to be n-connected if πiX = 0 for i ≤ n.
For example ‘0-connected’ means just ‘path-connected’ and ‘1-connected’ means
‘simply-connected’. Some sources use the terminology ‘n-simply-connected’ to
emphasise this.

Definition 2.1.2. A map f : X → Y is n-connected if its homotopy fibre is
(n − 1)-connected. Concretely, this means that the induced map on homotopy
groups f∗ : πiX → πiY is an isomorphism for i < n and a surjection for i = n.

Here’s a partial answer to the suspension isomorphism question for CW
complexes:

Theorem 2.1.3 (Freudenthal, 1937). Suppose that X is an n-connected CW
complex. Then the unit X → ΩΣX of the adjunction Σ a Ω is (2n + 1)-
connected.

Noting that πi(ΩY ) ∼= πi+1(Y ), we can see that this is equivalent to the
statement that the suspension maps πi(X) → πi+1(ΣX) are isomorphisms for
i ≤ 2n and a surjection for i = 2n + 1. The most elementary proof (the one
you’ll find in [4]) uses:

10Not all h-cogroups are suspensions.
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Theorem 2.1.4 (homotopy excision11). Let X be a CW complex that’s the
union of subcomplexes A and B with A ∩ B 6= ∅. If the pairs (A,A ∩ B) and
(B,A∩B) are m-connected and n-connected respectively, then the map of pairs
(A,A ∩B)→ (X,B) induced by the inclusion map is (m+ n)-connected.

The proof of the homotopy excision theorem is elementary but nasty - it
relies on some involved CW complex computations. Now we can prove the
suspension theorem:

Write ΣX = C+X ∪ C−X with C+X ∩ C−X = X. The suspension map
σ : πiX → πi+1ΣX is the same as the map πi(C+X,X) → πi+1(ΣX,C−X)
via the long exact sequence for pairs. Applying homotopy excision gets us the
result.

2.2 Consequences
Proposition 2.2.1. Let X be an n-connected pointed CW complex. Then ΣX
is (n+ 1)-connected.

Proposition 2.2.2. Let X be a pointed CW complex. Fix a positive integer n.
Then for all i ≥ n+ 2, the groups πn+i(ΣiX) are all isomorphic.

Proof. ΣX is at least path-connected, so ΣiX is at least (i−1)-connected. So we
have isomorphisms πn+i(ΣiX) ∼= πn+i+1(Σi+1X) as long as n+ i ≤ 2(i−1).

We call this stable limit the the nth stable homotopy group of X, denoted
πS

n (X). We see that πS
n (X) = πn+i(ΣiX) whenever i ≥ n + 2. If we consider

the sequence
πn(X)→ πn+1(ΣX)→ πn+2(Σ2X)→ · · ·

then we see that the colimit lim−→i
πn+i(ΣiX) is exactly πS

n (X).

More generally, ifX and Y are finite pointed CW complexes then the sequence

[X,Y ]→ [ΣX,ΣY ]→ [Σ2X,Σ2Y ]→ · · ·

always stabilises. After the first two terms, this is a sequence of abelian groups.
We define [Σ∞X,Σ∞Y ] to be the colimit lim−→i

[ΣiX,ΣiY ]. This limit is eventu-
ally attained, so for suitably large N we have [Σ∞X,Σ∞Y ] = [ΣNX,ΣNY ].

Proposition 2.2.3. πn(Sn) = Z for all n > 0.

Proof. We have a suspension sequence

π1S
1 → π2S

2 → π3S
3 → · · ·

and Freudenthal tells us that the first map is onto and all subsequent maps are
isomorphisms. There are at least two ways of seeing that the map Z � π2S

2 is
an isomorphism:

11This theorem is a weak form of the Blakers-Massey theorem, and is sometimes referred
to by that name.
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i) homotopy-theoretic: one can use the long exact sequence of the Hopf
bundle S1 → S3 → S2 to conclude that π2(S2) ∼= Z and the result follows.

ii) homological: the degree of a self-map of S2 is a Z-valued homotopy in-
variant. Since there exist maps of arbitrary degree, π2(S2) must surject
onto Z. In fact the degree map must be an isomorphism.

2.3 Stable homotopy groups of spheres
Of paticular interest are the groups πS

i (S0); the ith group is sometimes
abbreviated to just πS

i and called the stable i-stem. Note that we have
πS

i (S0) = πi+N (SN ) for N > i + 1. As an example, we have πS
0 = Z. A

theorem of Serre says that this is the only infinite stable stem:

Theorem 2.3.1 (Serre, 1953, [5]). πS
i is finite for all i > 0.

In fact Serre proved something stronger: the only infinite homotopy groups
of spheres are the groups πn(Sn) and π4m−1(S2m), which are all of the form
Z ⊕ F , where F is finite. The idea of the proof is to first prove a generalised
Hurewicz theorem, and use a spectral sequence argument to show that up to a
finite summand the groups HiS

n and πiS
n are isomorphic (unless i = 4m − 1

and n = 2m).

Stable homotopy groups of spheres are notoriously badly behaved and hard
to compute: the first few are

Z, Z/2, Z/2, Z/24, 0, 0, Z/2, Z/240, Z/2× Z/2, . . .

Composition of maps turns the group πS
∗ :=

⊕
i π

S
i into a graded-commutative

ring. In fact, this ring is the coefficient ring of a homology theory! We’ll see
why in 4.2.2.

Theorem 2.3.2 (Nishida, 1973). All elements of positive grading in the ring
πS
∗ are nilpotent.

3 Spectra
3.1 Finite spectra
Can we ‘stabilise’ our spaces? That is, for every space X can we meaningfully
define a space Σ∞X such that

i) πi(Σ∞X) = πS
i (X)

ii) Σ is an autoequivalence of the category of such spaces?

Our answer will be yes, as long as we weaken the concept of ‘space’.
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Definition 3.1.1. The category F of finite spectra12 has objects Σ∞+nX for
every finite CW complex X and integer n. The homsets are defined to be

HomF (Σ∞+nX,Σ∞+mY ) := lim−→
i

[Σi+nX,Σi+mY ]

and by Freudenthal the limit is attained at some finite stage.

The functors Σ, ∨ and ∧ all have extensions to F , and Σ becomes an autoe-
quivalence. The wedge product makes F into an additive category - it’s enriched
over abelian groups since we can write HomF (A,B) = HomF (Σ2A,Σ2B), which
is a finitely generated abelian group. However F is not abelian, but it is trian-
gulated, with shift functor Σ. Since Σ is an autoequivalence, we can desuspend
objects arbitrarily many times - so we can think of the objects Σ∞−nS0 for
n > 0 as negative-dimensional spheres.

It’s easy to recover stable homotopy groups as certain morphism sets of F :
we see that HomF (Σ∞+nS0,Σ∞X) ∼= πS

nX.

3.2 Infinite spectra
We’d like to extend this definition to all CW complexes, not just finite ones.
We could simply define a spectrum to be a directed system of finite spectra,
analogous to how a CW complex is the direct limit of its finite subcomplexes
(more formally, this is the ind-completion of F). Or we could repeat the defini-
tion of F , but with not-necessarily-finite CW complexes. Unfortunately these
constructions don’t work very well; the categories we get have bad technical
properties. Our definition of spectra will follow Adams in [1], III.13

Definition 3.2.1. A CW-spectrum (we’ll ususally just say spectrum) is a
sequence {En}n∈Z of CW complexes together with inclusions of subcomplexes
ΣEn → En+1. We call these maps the structure maps.

Before we go any further, let’s see some examples. We’ll see later (in 3.2.9)
that without any loss of generality we can take n ∈ N in the above definition.
Hence I’ll just write down what happens in nonnegative degrees.
Example 3.2.2.

i) The suspension spectrum of a CW complex X is the spectrum Σ∞X
with (Σ∞X)n = ΣnX and the obvious structure maps.

ii) The sphere spectrum S is the suspension spectrum of S0.

iii) An Ω-spectrum is a sequence of CW complexes En with weak homo-
topy equivalences En → ΩEn+1. Using adjointness, we see that every
Ω-spectrum defines a spectrum.

12Also known as the Spanier-Whitehead category.
13There are many other constructions; another method using orthogonal spectra is given

in in [6]. We’re using sequential spectra.

8



iv) Fix an integer n > 0 and a group G (abelian if n > 1). An Eilenberg-
Mac Lane space is a space K(G,n) with πnK(G,n) ∼= G and all other
homotopy groups trivial. They exist, are unique up to weak homotopy
equivalence, and can be constructed as CW complexes. The most impor-
tant property of Eilenberg-Mac Lane spaces is that they represent coho-
mology: we have Hn(X;A) ∼= [X,K(A,n)]. Since πi(ΩX) = πi+1X, we
see that ΩK(G,n + 1) is a K(G,n). Hence we must have a weak homo-
topy equivalence K(G,n) → ΩK(G,n + 1). This turns the collection of
Eilenberg-Mac Lane spaces for a given group G into an Ω-spectrum HG
with (HG)n = K(G,n).

Morphisms of spectra take a little bit of work to define. We’ll need to dis-
tinguish between functions, maps, and morphisms. A function f of degree
r between spectra E and F is a collection of maps fn : En → Fn−r commut-
ing with the structure maps. There are some issues with this definition: let
η : S3 → S2 be the Hopf fibration. We want to lift this to a degree 1 self-map
of S. However, η doesn’t desuspend to a map S2 → S1 or a map S1 → S0. We
want to define a stable version of functions that allow us to lift η to a map of
spectra.

Start by saying that a subspectrum E′ ⊆ E is cofinal (or dense) when every
cell in Em is eventually mapped to a cell in some E′m+N . The point is that
we only care about what happens stably, so to define a map between spectra
we may as well just define a map on a cofinal subspectrum, since all cells in E
eventually end up in E′. Adams says “cells now – maps later”. With this in
mind, we define:

Definition 3.2.3. Let E,F be spectra and U, V be two cofinal subspectra of
E. Let f : U → F and g : V → F be functions of spectra. Say that f and g are
equivalent if they agree on the cofinal subspectrum U ∩ V . A map from E to
F is an equivalence class of such functions.14

Example 3.2.4 (The Kan-Priddy map). For each n ≥ 1, let Xn be RPn−1 with
a disjoint basepoint. There’s a map Xn → O(n) that sends a line to L to
reflection in the hyperplane orthogonal to L containing the origin. Noting that
Hom(Sn, Sn) = Hom(S0,ΩnSn) = ΩnSn we see that there’s also a map O(n)→
ΩnSn, sending x ∈ O(n) to the corresponding transformation of Sn. Composing
and using the adjunction gives a family of maps ΣnXn → Sn, which we can
collect together into a map of spectra Σ∞X∞ → S. This map is homotopy
surjective, but the restrictions ΣnXn → Sn are nullhomotopic for all n, so this
map can only exist stably.

14More abstractly, we may partially order the collection of cofinal subspectra of a given
spectrum E by saying that U ≤ V if and only if V ⊆ U . If FU is the set of functions from U
to F , then the set of maps from E to F is the direct limit lim−→U

FU .
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Finally, we want to define morphisms so as to make the collection of spectra
into a category. A morphism will be a homotopy class of maps, and homotopy
will be defined as usual: in terms of maps out of a cylinder.15

Definition 3.2.5. Let I+ be the unit interval I with a disjoint basepoint
added. Let E be a spectrum. The cylinder spectrum Cyl(E) of E has
terms (Cyl(E))n = I+ ∧En and structure maps induced from those of E, using
Σ(X ∧ Y ) = X ∧ ΣY .

Definition 3.2.6. Say that two maps f, g : E → F are homotopic if there’s a
map from Cyl(E) to F restricting to f, g at the ends of the cylinder. Homotopy
is an equivalence relation, and a morphism of spectra is a homotopy class of
maps.

Write [E,F ]r for the set of morphisms of degree r from E to F . With
this definition the collection of CW spectra becomes a graded category, the
stable homotopy category, which I’ll denote Spe. As before, the functors
Σ, ∨ and ∧ all extend to Spe (proving this for the smash products is not so
easy16). We see that ΣE is just the spectrum with (ΣE)n = En+1, and hence
it’s obvious that Σ admits an inverse, the desuspension Σ−1. It’s clear that
[E,F ]r = [ΣrE,F ]0 = [E,Σ−rF ]0.

We define the homotopy groups of a spectrum to be πn(E) := [ΣnS, E]0 =
[S, E]n.

Proposition 3.2.7 ([1], III.2.8). If E is a spectrum, then

πn(E) = lim−→
k

πn+k(En+k) = lim−→
k

πS
n+k(En+k)

As a corollary, we see that for a suspension spectrum, πn(Σ∞X) = πS
n (X).

In particular we have πS
n = [S,S]n. So the sphere spectrum already contains all

of the information about the stable homotopy groups of spheres!

We finish by proving a couple of easy but important lemmas:

Proposition 3.2.8. If E′ is cofinal in E then the inclusion E′ ↪→ E is an
isomorphism.

Proof. The morphism E → E′ represented by the identity function E′ → E′ is
an inverse.

15The collection of spectra together with the maps of spectra is already a category, but it’s
very badly behaved. We’re about to definine the homotopy category of spectra. A true
‘category of spectra’ needs ∞-categorical tools; see Remark 3.2.10.

16We’d like the smash product to be symmetric monoidal, but we can only make this true
up to homotopy. One can fix this with more complicated theories of spectra, e.g. symmetric
spectra. Once we have a smash product functor we can define the internal hom of spectra
to be its right adjoint.
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Proposition 3.2.9. If E is a spectrum, then define the spectrum E′ by

E′n =
{
En n ≥ 0
{∗} otherwise

Then E ∼= E′. Hence we may as well index our spectra with nonnegative natural
numbers.

Proof. E′ is cofinal in E.

Remark 3.2.10. Let CW be the (1-)category of CW complexes. Glossing over
some technicalities, the category CW has an (∞, 1)-categorical enhancement,
i.e. an (∞, 1)-category ∞Grpd whose homotopy category Ho(∞Grpd) is iso-
morphic to hCW, the category of CW complexes and homotopy classes of
maps. Every (∞, 1)-category C has a stabilisation, which essentially consists
of forming ‘spectrum objects’ of C. The stabilisation is usually denoted Sp(C).
Then Spe is equivalent to the category Ho(Sp(∞Grpd)). So we can view
the formation of Spe from CW as a 1-categorical shadow of the procedure of
stabilisation of an (∞, 1)-category. This shows ‘why’ Spe is triangulated: it’s
the homotopy category of a stable (∞, 1)-category.

4 Homology and cohomology
4.1 Representability
If E is a spectrum and X a CW complex, then X ∧ E is the spectrum with
(X ∧ E)n = X ∧ En and obvious structure maps (compare the definition of a
homotopy in 3.2.5). This agrees with the smash product of spectra Σ∞X ∧ E.

Spectra are very closely related to generalised homology and cohomology
theories:

Definition 4.1.1. Let E be a spectrum. Define the E-homology of a pointed
CW complex X to be EnX := πn(X ∧ E). Define the E-cohomology to be
EnX := [Σ∞X,E]−n.

Proposition 4.1.2. If E is a spectrum then the sequence of functors En (resp.
En) is a reduced homology (resp. cohomology) theory for pointed CW complexes.

Remarkably, we get every cohomology theory this way:

Theorem 4.1.3. Every reduced cohomology theory on connected pointed CW
complexes is E-cohomology for some spectrum E.

The proof is an application of the Brown Representability Theorem. We
may in fact take E to be an Ω-spectrum.
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In addition, every morphism of spectra defines a cohomology operation be-
tween cohomology theories. However, the notions of reduced cohomology theory
and Ω-spectra are not quite the same! There are maps of spectra (called phan-
tom maps) which induce the zero map between cohomology theories.

One can also define E-homology and cohomology for spectra, and the same
results hold once we translate the Eilenberg-Steenrod axioms into the world of
spectra.

4.2 Examples
Which spectrum gives us ordinary (reduced) cohomology? Since Eilenberg-

Mac Lane spaces represent the cohomology functors H∗, it’s perhaps not so
surprising that HA represents ordinary cohomology: we have

HAnX = [Σ∞X,HA]n = [X,K(A,n)] = Hn(X;A)

Perhaps more surprising is that Eilenberg-Mac Lane spectra also corepresent
homology; this is harder to see.
Example 4.2.1. Let O (resp. U) be the infinite-dimensional orthogonal (resp.
unitary) group. Then a version of Bott periodicity says that we have weak
homotopy equivalences O → Ω8O and U → Ω2U , giving us periodic Ω-spectra
KO and KU . The associated (periodic) cohomology theories are real and
complex K-theory, respectively.
Example 4.2.2. What does the sphere spectrum S give us? The associated
homology theory is simply X 7→ πS

nX. The coefficient ring of this theory is the
ring πS

∗ we saw earlier. The associated cohomology theory is known as stable
cohomotopy, and the stable cohomotopy groups of X are denoted by πn

SX.
From now on, we’ll focus on the extended example of Thom spectra. A

nice reference is [2].

Definition 4.2.3. Let E → B be a vector bundle. We can define a sphere
bundle Sph(E) → B by taking the one-point compactification of each of the
fibres. The Thom space of the vector bundle is the space Th(E) := Sph(E)/B.
So we obtain Th(E) from Sph(E) by identifying all of the new points.

Remark 4.2.4. If B is compact, then Th(E) is the one-point compactification
of E.
Example 4.2.5. If Rn is the trivial bundle over B, then Th(Rn) = Σn(B+),
where B+ is B with a disjoint basepoint.
Example 4.2.6. Let V,W be any vector bundles over B. Then there is a home-
omorphism Th(V ⊕W ) ∼= Th(V ) ∧ Th(W ). In particular, if W = Rn is the
trivial bundle over B, we have Th(V ⊕ Rn) ∼= ΣnTh(V ).
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Definition 4.2.7. Let EO(n)→ BO(n) be the universal vector bundle of rank
n. Define MO(n) := Th(EO(n)). Note that if we pull back EO(n + 1) along
the inclusion BO(n) ↪→ BO(n+ 1), we get the vector bundle EO(n)⊕R. Since
pullback along a function f induces a map of Thom spaces Th(f∗V )→ Th(V ),
we get maps ΣMO(n)→MO(n+1). Hence the spacesMO(n) form a spectrum,
the Thom Spectrum MO.

Definition 4.2.8. The nth cobordism group Ωn is the set of cobordism classes
of compact smooth n-manifolds with group operation the disjoint union.

Theorem 4.2.9 (Thom). πn(MO) ∼= Ωn.

The associated cohomology theory ofMO is cobordism, and the associated
homology theory is bordism. These theories are 2-torsion, since M tM is the
boundary of M × I.

There are variants where we require our smooth manifolds to have more vector
bundle structure (e.g. framed, oriented, almost complex). In particular, if we
require our manifolds to be stably framed, a result of Pontryagin tells us that
we recover the stable homotopy groups of spheres!

References
[1] J. Frank Adams, Stable Homotopy and Generalised Homology, University

of Chicago Press, 1974.

[2] John Francis, Math 465, Lecture 2: Cobordism. available at http://math.
northwestern.edu/~jnkf/classes/mflds/2cobordism.pdf

[3] Peter Freyd, Homotopy is not concrete, in: The Steenrod Algebra and its
Applications, Springer-Verlag, 1970.

[4] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[5] Jean-Pierre Serre, Groupes d’homotopie et classes de groupes abelien, Ann.
of Math. 58 (1953), 258–294.

[6] Neil Strickland, An Introduction to the Category of Spectra, avail-
able at https://neil-strickland.staff.shef.ac.uk/research/
stableintro.pdf

13

http://math.northwestern.edu/~jnkf/classes/mflds/2cobordism.pdf
http://math.northwestern.edu/~jnkf/classes/mflds/2cobordism.pdf
https://neil-strickland.staff.shef.ac.uk/research/stableintro.pdf
https://neil-strickland.staff.shef.ac.uk/research/stableintro.pdf

	The Basics
	Homotopy
	The Fundamental Group
	Higher homotopy groups
	Operations on spaces

	Stabilisation
	The Freudenthal Suspension Theorem
	Consequences
	Stable homotopy groups of spheres

	Spectra
	Finite spectra
	Infinite spectra

	Homology and cohomology
	Representability
	Examples


