
Versal deformations
Matt Booth

March 9, 2017

1 Formal deformation theory
1.1 Setup
I’ll work over an algebraically closed field k of characteristic zero. Algebraic closure is needed, but
you can probably get away without the assumption on characteristic.

• Set is the category of sets.

• Artk is the category of commutative Artinian local k-algebras with residue field k, and local
algebra homomorphisms.

• Ârtk is the category of commutative Noetherian complete local k-algebras with residue field k,
and local algebra homomorphisms.

Even in this favourable situation (k̄ = k) we need the condition that the residue field is k: if l is
your favourite transcendental extension of k, then l[t]/(t2) satisfies all of the other conditions but is
really too big. An Artinian local ring is complete1 (and Noetherian), so Artk is a (full) subcategory
of Ârtk. There are several quotient functors Ârtk → Artk given on objects by Λ 7→ Λ/mj . We can
reconstruct Λ from these quotients, in the sense that Λ ∼= Λ̂ ∼= lim←−n(Λ/mn+1). A weak version of the
Cohen Structure Theorem tells us that every object of Ârtk is a quotient of a power series ring in
finitely many variables.

Suppose we have a functor F : Artk → Set. If we have a diagram

R′ → R← R′′ (*)

in Artk, then taking the pullback and applying F we obtain a natural map of sets

η : F (R′ ×R R′′)→ F (R′)×F (R) F (R′′)

A deformation functor is a functor F : Artk → Set such that:

i) F (k) is a one-element set.

ii) In any diagram * as above, whenever R′ → R is a surjection then η is a surjection.

iii) In *, if R = k then η is a bijection.

I denote the dual numbers by k[ε] := k[t]/(t2) ∈ Artk. The tangent space to a deformation functor
is the set T 1F := F (k[ε]). It’s a vector space, because k[ε] is a vector space object in Artk. It’s not
always finite-dimensional. A natural transformation φ : F → G of deformation functors induces a
linear map T 1F → T 1G of tangent spaces, the differential dφ.

1I think I got confused about this during the talk, but it’s easy to see since the maximal ideal is nilpotent.
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1.2 Formal elements
Let F be a deformation functor. A formal element of F is a ring Λ ∈ Ârtk together with a
compatible2 sequence of elements ξn ∈ F (Λ/mn+1). We denote the set of formal elements of F over
Λ by F̂ (Λ) ∼= lim←−n F (Λ/mn+1). Note that F̂ is a functor Ârtk → Set.

A formal element (Λ, {ξn}) is versal, resp. universal, if the following holds:

Take a ring R ∈ Artk with mn+1
R = 0, and an element η ∈ F (R). Suppose we have a map

Λ/mn+1 → R sending ξn to η. Then, for all surjections R′ → R and η′ ∈ F (R′) mapping to η, there
exists (resp. exists and is unique) a map Λ/mn+1 → R′, lifting Λ/mn+1 → R, that sends ξn to η′.

So having a formal (uni)versal element is essentially a (unique) lifting condition against square-zero
extensions3. This looks a bit like formal smoothness (formal étaleness): we can draw loose analogies

formal versal element formally smooth map surjective differential
formal universal element formally étale map bijective differential

We’ll see soon that formal versal (resp. universal) elements induce surjections (resp. bijections) on
appropriate tangent spaces.

1.3 Prorepresentability and weakenings
If Λ ∈ Ârtk then it defines a functor hΛ : Artk → Set by sending R to HomÂrtk

(Λ, R). In particular,
if Λ ∈ Artk then such a functor is just a representable functor. Say that a deformation functor F is
prorepresentable if it’s isomorphic to hΛ for some Λ. Such a Λ is unique up to unique isomorphism.
Intuitively, a functor is prorepresentable if it’s the functor of deformations of some point of a scheme.

Theorem 1.3.1 ([4], 2.3.1). F is prorepresentable if and only if it is left exact (i.e. preserves pull-
backs) and has a finite-dimensional tangent space.

The ‘only if’ part is easy to prove, but the ‘if’ part is considerably harder. The following theorem
gives us a link between prorepresentability and existence of formal (uni)versal elements:

Theorem 1.3.2. Let F be a deformation functor. Then F has a formal versal (resp. universal)
element if and only if there’s a ring Λ ∈ Ârtk and a smooth surjection4 (resp. an isomorphism)
φ : hΛ → F .

So F has a formal universal element if and only if it’s prorepresentable. The proof of 1.3.2 proceeds
via the following intermediate lemma:

Lemma 1.3.3 ([4], 2.2.2). Let F be a deformation functor. Then for any Λ ∈ Ârtk there’s a bijection

F̂ (Λ)
∼=−→ Hom(hΛ, F )

Proof. Given a pair (Λ, ξ̂), we must construct a map hΛ → F . We have elements ξn ∈ F (Λ/mn+1)
that induce maps hΛ/mn+1 → F by the Yoneda lemma. Fix an R ∈ Artk. Since the maximal ideal of
R is nilpotent, every map Λ → R factors through some Λ/mN+1. So we have hΛ(R) ∼= hΛ/mN+1(R).
Compose with the map induced by ξN to get a map hΛ(R) → F (R). One checks that these fit
together into a natural transformation. Conversely, given φ : hΛ → F , we define ξn := φ(πn) where
πn ∈ hΛ(Λ/mn+1) is the quotient map. These two constructions are inverse.

2There’s an inverse system Λ/m← Λ/m2 ← Λ/m3 ← · · · whose limit is Λ, and ‘compatible’ means that the induced
map F (Λ/mn+1)→ F (Λ/mn) sends ξn to ξn−1.

3Every surjection in Artk factors as a composition of square-zero extensions - cf. [2].
4A natural transformation G → H is a surjection if every G(X) → H(X) is surjective, and smooth if for all

surjections X → Y , the map G(X)→ G(Y )×H(Y ) H(X) is a surjection.
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Remark 1.3.4. One can abstractly see the existence of the above bijection if one uses the language of
Kan extensions; I claim that F̂ is the right Kan extension of F along the inclusion ι : Artk → Ârtk.
To prove this, use the characterisation (RanιF )(Λ) ∼= lim J where J is the diagram defined by the
composition (Λ ↓ ι) → Artk

F−→ Set. A piece of J looks like F (A) F (f)−−−→ F (A′), where A and A′ are
in Artk, and there exists a commutative triangle

Λ

A A′
f

in Ârtk. Since the maximal ideals of A and A′ are nilpotent, the maps from Λ must factor through
some Λ/mNΛ for some N > 0, and we hence obtain a commutative triangle

Λ/mNΛ

A A′
f

in Artk. Hence the subdiagram

F (Λ/mΛ)← F (Λ/m2
Λ)← F (Λ/m3

Λ)← · · ·

is final in J , and so we see that

lim J ∼= lim←−
n

F (Λ/mn+1) = F̂ (Λ) .

Finally, one uses the weighted limit definition of right Kan extension to compute

(RanιF )(Λ) ∼= limhΛF ∼= Hom(hΛ, F ) .

If (Λ, ξ̂) is a formal element of F , the induced map dφ : T 1hΛ → T 1F is called the Kodaira-
Spencer map of (Λ, ξ̂). The formal versal elements of Λ whose Kodaira-Spencer map is a bijection
are called miniversal or semiuniversal. We have obvious inclusions

{universal elements} ⊆ {miniversal elements} ⊆ {versal elements}

2 Computing (uni)versal deformations
2.1 Schlessinger’s algorithm
Schlessinger’s theorem not only tells us when a deformation functor has a formal (uni)versal element,
but can be adapted to provide an algorithm to find one. Let F be a deformation functor with a formal
versal element. We can compute it inductively - the algorithm follows Schlessinger’s original proof
from [3]:

Base case Say the dimension of T 1F is d. We know that d <∞ since F has a versal element. Set
P := kJz1, . . . , zdK. Let J1 be the square of the maximal ideal of P , and set

U1 := P/J1 ∼= k[ε]×k · · · ×k k[ε]︸ ︷︷ ︸
d copies

where X ×k Y is the pullback5 along the canonical quotient maps to k. Observe that by construction
T 1hU1

∼= T 1F .
5Around this point I made a bad mistake and said that by X ×k Y I meant the tensor product X ⊗k Y - observe

that dim(k[ε]×k k[ε]) = 3 but dim(k[ε]⊗k k[ε]) = 4.
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Since F is a deformation functor we see that F (U1) ∼= T 1F×· · ·×T 1F . Fix a basis e1, . . . , ed of T 1F
and set ξ1 := (e1, . . . , ed) ∈ F (U1). One can check that ξ1 induces an isomorphism T 1hU1 → T 1F .

Induction step Suppose we’ve already found Jn ⊆ P , Un = P/Jn and ξn ∈ F (Un). Consider the
set S of ideals J ⊆ P such that

i) mPJn ⊆ J ⊆ Jn

ii) ξn lifts to F (P/J) along the map defined by the surjection P/J � Un

Note that S is nonempty because Jn ∈ S. Let Jn+1 be a minimal element of S. Set Un+1 := P/Jn+1,
and let ξn+1 be any lift of ξn to F (Un+1). Such a lift exists by condition ii).

Theorem 2.1.1 (Schlessinger). The previous procedure works. More specifically, the Un fit together
into an inverse system with limit U := lim←−n Un, and the pair (U, ξ̂) is a formal versal element for F .
Moreover, if F has a formal universal element, then (U, ξ̂) will also be universal.

2.2 An improved version for algebras
Let’s assume we’re trying to deform some finite-type algebra A := k[x1, . . . , xp]/(f1, . . . , fq). Sch-
lessinger’s algorithm works, but it isn’t very computational. The following modifications for this
setup seem to be due to Artin - they’re certainly in [1]. He leaves the base case alone, but changes the
induction step considerably - instead of picking a maximal algebra first, and then a flat deformation,
he writes down a ‘suitably generic’ flat deformation and finds the maximal algebra that it lifts to.
I’m emphasising ‘flat’ because we first write down a general ‘non-flat’ deformation, and flatness will
impose some constraints - i.e. some relations in P . The ideal generated by these relations will be
exactly Jn+1.

For n ≥ 1, let Rn denote the subcategory ofArtk of those rings R with mn+1
R = 0. Note that the Rn

are nested, so that we have a sort of filtration R1 ↪→ R2 ↪→ · · · of Artk. If we define Pn := P/mn+1
P ,

then Pn is a free object in Rn.

We see that a formal element (Λ, ξ̂) of F is (uni)versal if and only if each ξn has a (unique) lifting
property with respect to extensions in Rn. In this case, we can also say that each ξn is (uni)versal for
the category Rn, so that the algorithm starts with a universal6 deformation for R1 and inductively
lifts it to (uni)versal deformations for the Rn.

Lemma 2.2.1. The algebra Un is a quotient of Pn, and hence in Rn.

Proof. Certainly true for n = 1. For n ≥ 2, by construction of the Jn we have mPJn−1 ⊆ Jn, and
hence inductively a chain

mn−1
P J1 ⊆ mn−2

P J2 ⊆ · · · ⊆ mjPJn−j ⊆ · · · ⊆ mPJn−1 ⊆ Jn

Now using that J1 = m2
p, we get an inclusion mn+1

p ⊆ Jn and hence a surjection
Pn = P/mn+1

p � P/Jn = Un.

As a corollary, at the nth step of the induction we may restrict our attention to the rings in Rn -
in fact those rings that are quotients of Pn.

6It’s a general fact that any first-order versal deformation will be universal, essentially because the category R1 is
so small: it’s equivalent to the category of finite-dimensional vector spaces.
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As a note on terminology, when I say that an algebra B is ‘given by’ relations S, I mean that B is
the quotient of a polynomial ring by the ideal generated by S. Since polynomial rings are Noetherian,
we may take S to be finite, and I usually just write down a generic element si.

Recall that we’re trying to deform A, which is an algebra given by relations fi. Let’s suppose we’ve
found Jn and ξn, and are looking to find Jn+1 and ξn+1. Say that ξn is the deformation of A over Un
given by relations fi+ri, where the ri are elements of mUn

⊗kA ⊆ Un⊗kA. Since this tensor product is
simply a quotient of Pn[x1, . . . , xp], we may as well regard the ri as being elements of mPn

[x1, . . . , xp].
Note that mPn

can be identified with the subset of k[z1, . . . , zd] consisting of the polynomials of degree
n with no constant term, so we can think of the ri as belonging to k[z1, . . . , zd][x1, . . . , xp].

Now we try to naïvely lift ξn to a deformation over Pn+1. Consider a new Pn+1-algebra Ã given by
relations fi + ri + r′i, where now the r′i are polynomials in x1, . . . , xp with coefficients from

{polynomials in z1, . . . , zd homogeneous of degree n+ 1}

Certainly we already have Ã ⊗Pn+1 k
∼= A. We now find the minimal set of relations between the

coefficients of the fi + ri + r′i such that Ã is a flat deformation of A. We can often find these relations
by Gröbner basis methods, as we’ll see later. These relations will generate some ideal of Pn+1, and
Jn+1 will be exactly this ideal. The required deformation ξn+1 over Un+1 will be Ã. Essentially, Ã
is (uni)versal because it’s the most general choice of deformation we could have made - because we
chose a minimal set of relations, every deformation of A over a quotient of Pn+1 is induced by ξn+1
over Un+1.

2.3 A sample computation
Let A be the first-order neighbourhood of 0 ∈ k2; i.e. the k-algebra k[x, y]/(x2, xy, y2). Note that
A ∼= k[ε] ×k k[ε]. We’re going to compute the formal versal deformation of A. The first step is to
compute the first-order universal deformation.

I’ll omit this computation - we did it a few weeks ago, following Artin in [1]. Every first-order
deformation is given by relations

x2 = z1εx+ z2εy

xy = z3εx+ z4εy

y2 = z5εx+ z6εy

where the zi are in k. The tangent space manifestly has dimension 6, so we set P := kJz1, . . . , z6K and
U1 := P/m2

p as usual. The universal deformation ξ1 is just the U1-algebra given by relations

x2 = z1x+ z2y

xy = z3x+ z4y

y2 = z5x+ z6y

To be more precise, I mean that the deformation is the U1-algebra

k[x, y]
(x2 − z1x− z2y, xy − z3x− z4y, y2 − z5x− z6y)

It’s easy to see that maps U1 → k[ε] are in bijection with assignments of the zi to elements of kε ⊆ k[ε],
and that such an assignment determines a deformation of A over k[ε].
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Now for the lifting step. Consider the algebra Ã over Pn+1 given by relations

x2 = z1x+ z2y + α1

xy = z3x+ z4y + α2

y2 = z5x+ z6y + α3

where the αi are polynomials in x, y with coefficients from the maximal ideal of Pn+1. We’re looking
to find a minimal set S of relations between the zj such that Ã is flat over Pn+1/(S). Clearly we may
reduce to the case where the αi are linear in x and y. Write αi = β1

i x + β2
i y + β3

i . By a change of
coordinates z1 7→ z1 + β1

1 , z2 7→ z2 + β2
1 ,. . . ,z6 7→ z6 + β2

3 in P , we may eliminate these linear terms
and assume without loss of generality that the αi are constant in x, y.

One can now use results on Gröbner bases to find the minimal set of relations: Artin proves that
Ã is flat if and only if ‘the overlaps are consistent’. For example if we have relations xy3 = p1 and
x3y = p2, then we want x2p1 = y2p2 to hold. Of course this equation will hold in the quotient, but
there is no reason for it to hold amongst the relations: for a stupid example, in k[x]/(x − 1, x − 2)
we have x − 1 = x − 2 but of course 1 6= 2. So all that we need to do is check the finite number of
overlaps, and the relations we get will be the minimal ones needed.

Getting back to the example, there are two overlaps we need to check:
(x2)y = x(xy) and x(y2) = (xy)y. Writing these equations out, reducing them to linear equations in
x, y, and equating coefficients, we obtain the three relations

α1 = z2z3 − z1z4 + z2
3 − z2z6

α2 = z2z5 − z3z4

α3 = z4z5 − z3z6 + z2
3 − z1z5

Note that we didn’t obtain any relations between the zi (in other words, the deformation is unob-
structed). So Jn+1 = 0 and hence Un+1 = Pn+1. The formal versal algebra is hence U = P , and the
formal versal deformation is given by

x2 = z1x+ z2y + z2z3 − z1z4 + z2
3 − z2z6

xy = z3x+ z4y + z2z5 − z3z4

y2 = z5x+ z6y + z4z5 − z3z6 + z2
3 − z1z5

Or to be more precise, the formal versal deformation is the P -algebra obtained by quotienting k[x, y]
by these relations. If R ∈ Rn, then a surjection Pn � R induces a deformation of A over R, in the
same manner as before.

This deformation is in fact universal - Brent pointed out that one can see this by thinking geomet-
rically. Namely, A is a point of X = Hilb3(k2), which is a smooth variety over k of dimension 3 ·2 = 6.
So the formal neighbourhood of A ∈ X is isomorphic to P , and hence P prorepresents the functor
DefA∈X ∼= DefA.
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