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Abstract. We show that generalised Calabi–Yau dg (co)algebras are Koszul
dual to generalised symmetric dg (co)algebras, without needing to assume any
smoothness or properness hypotheses. Similarly, we show that Gorenstein
and Frobenius are Koszul dual properties. As an application, we give a new
characterisation of Poincaré duality spaces, which extends a theorem of Félix–
Halperin–Thomas to the non-simply connected setting.
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1. Introduction

Over the past twenty years, many authors have studied various different kinds
of noncommutative Calabi–Yau structures on dg categories [Gin06, KS09, Kel11,
VdB15, BD19, BD21, KTV21, KTV23]. Loosely, a Calabi–Yau structure should be
thought of as a derived noncommutative version of a trivialisation of the canonical
sheaf; for homologically smooth or proper dg categories one often asks for finer data,
usually in the form of a lift of a Hochschild class to (negative) cyclic homology.

In this paper, we define and study a very general kind of Calabi–Yau dg (co)algebra;
our definition is a generalisation to the non-smooth setting of the ‘left Calabi–Yau’
structures of [BD19]. We also study a version of the ‘right Calabi–Yau’ condition
for dg (co)algebras - which we call symmetric, since it is a natural generalisation
of the corresponding discrete notion for finite dimensional algebras (also known as
symmetric Frobenius) - and show that these two concepts correspond across Koszul
duality.

Koszul duality has many different meanings, but for us in this paper it refers to
the equivalence of ∞-categories or of model categories

dgAlgaug
k ←→ dgCogconil

k

between augmented dg-k-algebras and conilpotent dg-k-coalgebras, for a fixed field
k. The functors in question are given by the bar and cobar constructions. This
equivalence in particular underlies the modern approach to noncommutative de-
rived deformation theory [Lur11b, §3]. DG coalgebras can also be thought of as
pseudocompact dg algebras (or more accurately, their continuous linear duals) and
we switch between these perspectives when convenient.

Specifically, we prove the following theorem (part of Theorem A below). Let A
be an augmented dg algebra and C := BA its Koszul dual conilpotent dg coalgebra.
Then:

(1) A is nonsmooth Calabi–Yau if and only if C is symmetric.
(2) C is nonsmooth Calabi–Yau if and only if A is symmetric.
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We remark that one can use this theorem to give a Morita duality result, stating
that if A is a smooth local Calabi–Yau dg algebra then pvd(A) is a right Calabi–
Yau dg category (see 5.35 and 8.17 for the details).

It will be key for us to work with nonsmooth dg algebras (and dually, non-
proper dg coalgebras). For example, the dual numbers k[ε]/ε2 is a nonsmooth
Calabi–Yau dg algebra, which leads to the surprising conclusion that its Koszul
dual, the power series ring kJxK, is a pseudocompact symmetric algebra. One can
also prove this directly from the definitions (3.12); there is no contradiction here as
the ‘pseudocompact linear dual’ is not computed as the linear dual of the underlying
vector space. More generally, we prove that the pseudocompact graded algebra of
power series kJx1, . . . , xnK, with xi in degree di, is (n −

∑
i di)-symmetric (8.7).

In a loose sense this can be thought of as a derived local complete intersection
property for the associated formal derived scheme. In fact, a similar argument
shows that a discrete commutative complete local Gorenstein k-algebra also has
this self-duality property (8.10), which is in some sense a manifestation of Matlis
duality for zero-dimensional Gorenstein rings.

We also develop one-sided versions of our generalised Calabi–Yau conditions;
the one-sided version of nonsmooth Calabi–Yau is Gorenstein and the one-sided
version of symmetric is simply Frobenius. There is a rich literature on Gorenstein
dg algebras dating back many years [AF92, FJ03, DGI06, AI08, Jin18, Goo23]; our
definition agrees with that of Avramov and Foxby. Moreover, we show that the
Gorenstein and Frobenius properties are also Koszul dual. We also provide some
rigorous justification of the heuristic that ‘smoothness is Koszul dual to properness’.
Our main theorem states that the following properties are Koszul dual:

Theorem A (8.3, 5.25, 5.28). The following properties of augmented dg algebras
and conilpotent dg coalgebras correspond across Koszul duality:

Property Koszul dual property
(nonsmooth) Calabi–Yau Symmetric

Gorenstein Frobenius
Smooth Strongly proper local
Regular Proper local

As before, each row of this table comprises two theorems: for each property P , an
augmented dg algebra A has P if and only if BA has the Koszul dual property. We
also prove twisted versions: namely, twisted Calabi–Yau is Koszul dual to twisted
symmetric.

Many of our examples come from algebraic geometry, where we show that a
nonsmooth Calabi–Yau scheme is singular Calabi–Yau in the sense of Iyama–Reiten
(7.9). The converse holds in the local setting, where nonsmooth Calabi–Yau and
Gorenstein are equivalent (7.8). We moreover show that Grothendieck duality for
proper schemes X can be reinterpreted as a Frobenius condition, which can be
upgraded to a symmetric condition precisely when X is nonsmooth CY (7.24).

Our main application is a new characterisation of Poincaré duality spaces. For
a fixed field k and pointed topological space X, we let C•X be the dg coalgebra
of k-chains on X and C•X the dg algebra of k-cochains. When Y = ΩX is a loop
space, recall that concatenation of loops makes C•Y into a dg algebra (in fact - up
to quasi-isomorphism - a dg Hopf algebra).
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Theorem B (9.32 and 9.42). Let X be a path connected finitely dominated topo-
logical space. Then the following are equivalent:

(1) X is a d-dimensional Poincaré duality space.
(2) C•ΩX is a d-Gorenstein algebra.
(3) C•ΩX is a d-Calabi–Yau algebra.
(4) C•X is a d-Frobenius coalgebra.
(5) C•X is a d-symmetric coalgebra.

If in addition X is simply connected, the above conditions are equivalent to the
following:

(1) C•X is a (−d)-Gorenstein algebra.
(2) C•X is a (−d)-Frobenius algebra.
(3) C•X is a (−d)-symmetric algebra.
(4) C•X is a (−d)-Calabi–Yau algebra.

Our notion of Poincaré duality space is a fully derived version that gives chain-
level Poincaré duality for all local systems of dg-k-vector spaces. In particular,
it is sensitive to the base field: we warn that a space X could be a Poincaré
duality space for a given choice of k and not for a different choice. Theorem B
generalises a characterisation of simply connected Poincaré duality spaces due to
Felix, Halperin, and Thomas [FHT88]; namely that they are Gorenstein spaces.
In fact we show that a Poincaré duality space is always a Gorenstein space, and that
the converse is true for simply connected finite CW complexes (9.44). In order to
prove Theorem B, we make use of the dg Hopf algebra structure on C•ΩX (strictly,
one needs to take normalised chains on the Kan loop group of SingX). This use
of the Hopf structure is key in order to translate between the one-sided conditions
(Gorenstein, Frobenius) and the two-sided conditions (Calabi–Yau, symmetric).
Specifically, we show that certain dg Hopf algebras are Calabi–Yau if and only
they are Gorenstein (9.8); the proof rests on a computation of their Hochschild
cohomology, which generalises a theorem of Ginzburg and Kumar [GK93]. We
also give an application to unimodular Lie algebras (9.15). As applications of our
results on Poincaré duality, we also obtain some results in string topology, rational
homotopy theory, and Lie group (co)homology.

We remark that all of our results which do not mention the bar construction
remain true for non-conilpotent coalgebras. In this setting, one needs to use de-
rived categories of the second kind on the algebra side to get a satisfactory module-
comodule Koszul duality [Pos11, GL21]. Briefly, if A is a dg algebra then its derived
category of the second kind DII(A) is a triangulated category constructed by local-
ising the category of A-modules at a class of weak equivalences finer than the quasi-
isomorphisms. Most relevant for us is that if C is a coaugmented (non-conilpotent)
dg coalgebra and A := ΩC is its Koszul dual dg algebra, then there is a natural
triangle equivalence DII(A) ≃ Dco(C). This ensures that in the non-conilpotent
setting, our main theorems remain true mutatis mutandis by replacing D(A) by
DII(A). For example, our methods show that a non-conilpotent coaugmented dg
coalgebra C is symmetric if and only if A := ΩC is Calabi–Yau of the second
kind, meaning that there is a weak equivalence RHomDII(Ae)(A,A

e) ≃ A[n] in
DII(Ae).

In future work we hope to provide a similar analysis of the results of [Kel11] on
Calabi–Yau completions. Following our Poincaré duality results, we also hope to
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apply similar methodology to some results in string topology and the cohomology
of p-compact groups. It would also be interesting to compare our results more fully
with those of [KTV21, KTV23] on pre-Calabi–Yau structures, or to obtain similar
results in the global setting of [BL23].

While preparing this paper, we learned of the similar results obtained by Holstein
and Rivera [HR24]. They obtain analogous Koszul duality statements for left and
right Calabi–Yau dg categories. There are three key differences between [HR24]
and the current paper: first is that we drop any smoothness/properness hypotheses
completely. This means that we are unable to obtain any results about (negative)
cyclic homology, since in our setting CY structures are no longer given by Hochschild
classes. However it means that we are able to get wider classes of results: for
example, we show that the pseudocompact algebra kJxK is Frobenius (= weak right
CY), a notion which is only defined in [HR24] for proper pseudocompact algebras.
For example, our Theorem A generalises the weak one-object cases of [HR24, 3.26]
and [HR24, 3.33].

The second difference is that while [HR24] work with dg categories, we work
only with dg algebras (i.e. one-object dg categories). Although we believe that
our results probably extend to the many-object setting, we do not tackle such
issues in the current paper. The dg categorical approach also removes the need for
(co)augmentations.

The third difference is that we also obtain one-sided results for Gorenstein and
Frobenius (co)algebras; while [HR24] do not consider these conditions their proofs
would adapt in the relevant settings.

A key technical difference with the approach of [HR24] is our use of contramod-
ules. Especially important for us is that we identify the linear dual functor on
modules - across Koszul duality - with a certain sort of ‘derived contramodule dual’
functor (3.18). Holstein and Rivera also obtain a Poincaré duality result similar to
ours, since the relevant dg algebras used in the proof are smooth.

Finally, we mention also that our results generalise some of those of the recent
preprint [Mao24], which imposes connectivity conditions in order to reduce the
study of proper dg coalgebras to proper dg algebras.

The authors would like to thank Benjamin Briggs, Timothy De Deyn, Callum
Galvin, Isambard Goodbody, John Greenlees, Julian Holstein, Sebastian Opper,
David Pauksztello, Manuel Rivera, Alex Takeda, and Michael Wemyss for helpful
conversations.

1.1. Layout of the paper. Section 2 contains preliminaries on algebras and coal-
gebras. We review co/contraderived categories, the five functor formalism for
co/contramodules, and the co/contra correspondence.

Section 3 is a review of Positselski’s Koszul duality and Guan–Holstein–Lazarev’s
bimodule Koszul duality. We also develop some dual functors for co/contramodules,
which may be of independent interest.

Section 4 is a short section which contains some material on derived Picard
groups. Having shown earlier in section 3 that bimodule Koszul duality is monoidal,
we use this to show that the derived Picard group of an augmented algebra agrees
with the derived Picard group of its Koszul dual coalgebra. We also provide a
translation into contramodules.

Section 5 concerns notions of smoothness and properness for algebras and coalge-
bras. Loosely, we show that smoothness and properness are Koszul dual properties.
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Section 6 concerns the nonsmooth CY condition on algebras. We also explore
the links with CY structures on associated dg categories.

In section 7 we define Gorenstein and Frobenius algebras, and compare our notion
of Gorenstein to others extant in the literature. Having developed the necessary
technology in section 4, we show that a dg Frobenius algebra admits a Nakayama
automorphism. We also discuss CY structures on some associated dg categories,
and pay special attention to proper Frobenius algebras.

Section 8 contains the main theorems of this paper. We show that Gorenstein
and Frobenius are Koszul dual concepts, and that nonsmooth CY and symmetric
are similarly Koszul dual concepts. We also study finite dimensional Frobenius
coalgebras in some detail, and give some results on endomorphism algebras that
strengthen our earlier discussion of CY structures on categories.

Section 9, the final section, concerns applications to topology. We use Gorenstein
duality and some results about dg Hopf algebras to obtain a new characterisation
of Poincaré duality spaces. We give several examples.

1.2. Notation and conventions. Throughout this paper we work over a fixed
base field k; for many purposes a commutative semisimple ring will do. Everything
will be linear over k, and in particular unadorned tensor products are to be taken
over k.

We denote isomorphisms with ∼= and weak equivalences with ≃.
A dg algebra is a monoid in the category of dg-k-vector spaces, and a dg

coalgebra is a comonoid. A dg algebra A is augmented if the unit map k → A has
a retract in the category of dg algebras. Similarly, a dg coalgebra is coaugmented
if the counit map C → k has a section in the category of dg coalgebras.

We will consistently drop the adjective ‘dg’ with the convention that it is implicit,
so for example a ‘vector space’ is a dg vector space and an ‘algebra’ is a dg algebra.
We will use the modifier ‘discrete’ to refer to objects concentrated in degree zero.

If C is a coaugmented coalgebra, the coaugmentation coideal C̄ := C/k acquires
a reduced comultiplication ∆̄. Say that C is conilpotent if for every c ∈ C̄, there
exists some n such that ∆̄n(c) = 0. By convention, every coalgebra we consider
in this paper will be conilpotent; many of our theorems remain true without this
assumption.

If R is an algebra then R◦ will denote its opposite algebra and Re := R◦ ⊗R its
enveloping algebra. An R-module will always mean a right R-module. Often we
will refer to left R-modules as R◦-modules. An R-bimodule is a module over Re.
We use similar notation for coalgebras. Comodules will always be right comodules,
and when we wish to consider left C-comodules we will usually simply consider
comodules over the opposite coalgebra C◦.

If U is a vector space, we use U∗ to denote its k-linear dual. If U, V are vector
spaces, there is a natural map U∗ ⊗ V ∗ → (U ⊗ V )∗ given by

f ⊗ g 7→ [u⊗ v 7→ (−1)|u||g|f(u)g(v)]

and in particular we do not swap the factors in the tensor product. This ensures
that if C is a coalgebra, C-comodules dualise to C∗-modules.

We use cohomological indexing as standard; when discussing applications to
topology we will occasionally use homological indexing. We denote shifts by [1], so
that if V is a complex V [1] denotes the complex with V [1]i = V i+1. In particular
if V is concentrated in degree 0 then V [1] is concentrated in degree −1.
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If T is a triangulated category (or a pretriangulated dg category) and S is a set
of objects of T , then thick(S) will denote the smallest full triangulated subcategory
of T containing S and closed under direct summands. It can be obtained as the
closure of S under shifts, cones and direct summands. Note that thick(S) is also
closed under direct sums, as (up to a shift) these can be obtained as cones on the
zero morphism.

If R is an algebra, or more generally a dg category, we use D(R) to denote the
derived category of R. This is a pretriangulated dg category; often we will forget
the dg structure and consider it simply as a triangulated category. The perfect
derived category of R will be denoted by Perf (R) := thickD(R)(R); it is also a
pretriangulated dg category which coincides with the compact objects of D(R).

Let R be an algebra. Say that R is proper (or perfectly valued) if it has finite
total cohomological dimension, i.e. ⊕nH

n(R) is a finite dimensional k-vector space.
We use the same terminology for R-modules. If A is a dg category, its perfectly
valued derived category, denoted pvd(A), is the subcategory of D(R) on those
modules which factor through Perf (k) ↪→ D(k). When R is an algebra, then
pvd(R) consists precisely of those modules whose underlying dg vector spaces have
finite dimensional total cohomology.

Say that an R-module M is reflexive if the natural map M →M∗∗ is a quasi-
isomorphism. Clearly M is reflexive if and only if each HiM is a finite dimensional
vector space. Let ref (R) ⊆ D(R) denote the full triangulated subcategory on the
reflexive modules. We have an obvious inclusion pvd(R) ↪→ ref (R); indeed a
module is perfectly valued if and only if it is reflexive and bounded.

2. Preliminaries on algebras and coalgebras

We review some of the theory of comodules and contramodules over coalgebras,
paying special attention to coderived and contraderived categories. For a more
thorough account see Positselski’s paper [Pos11] or book [Pos10].

2.1. Modules. Let R be an algebra. We regard the category Mod-R of all R-
modules as a model category with its usual projective model structure; its ho-
motopy category is D(R), the derived category of R. The functor HomR(−, R) :
Mod-R → (Mod-R◦)

◦ is right Quillen and hence admits a total derived functor
RHomR(−, R) : D(R)→ D(R◦)◦ which we refer to as the one-sided dual functor
or simply the dual when the context is clear. Clearly RHomR(R,R) ≃ R, so by
taking thick subcategories we get induced contravariant equivalences

RHomR(−, R) : Perf (R)←→ Perf (R◦) : RHomR◦(−, R).
Similarly, if R is an algebra and M an R-module, we denote by M∗ its k-linear

dual Homk(M,k). Since this functor is exact, it is its own right derived functor.
Linear duality hence defines a contravariant functor D(R)→ D(R◦) which induces
contravariant equivalences between ref (R) and ref (R◦).

If R ≃ R◦ as algebras, then we may regard both the one-sided and the k-linear
duals as contravariant endofunctors on D(R). In particular, suppose that R = Ae

for some other algebra A. If M is an A-bimodule, then its bimodule dual is
the A-bimodule M∨ := RHomAe(M,Ae). The bimodule dual functor induces a
contravariant autoequivalence on Perf (Ae). Similarly, the linear dual of M is
the A-bimodule A∗ and the linear dual functor is a contravariant autoequivalence
of ref (Ae).
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The category Mod-Ae of A-bimodules is both right and left closed monoidal un-
der the tensor product ⊗A, with its adjoints given by HomA and HomA◦ . However
it is not symmetric monoidal, unless A is commutative. The above functors derive
to give a non-symmetric monoidal structure on D(Ae). For M a fixed A-bimodule,
the functor M ⊗L

A − has a right adjoint, the left internal hom RHomA◦(M,−).
Similarly, the functor −⊗L

AM has a right adjoint RHomA(M,−) which we call the
right internal hom.

A bimodule M is symmetric if am = ma, for all a ∈ A and m ∈M . Note that
A is commutative if and only if it is a symmetric bimodule over itself. When A is
commutative, then so is Ae, and the (derived) categories of A-modules, A◦-modules,
and symmetric A-bimodules all coincide, and all are closed symmetric monoidal
categories under ⊗L

A. Even when A is commutative, the category of A-bimodules
need not be symmetric monoidal (take two noncommuting automorphisms of A and
twist the regular bimodule by them).

As a consequence, if A is a commutative algebra, then the category of all A-
bimodules is equivalent to the category of symmetric Ae-bimodules. In particular,
a symmetric A-bimodule is not the same thing as a symmetric Ae-bimodule.

2.2. Comodules and contramodules. Let C be a coalgebra. A comodule over
C is a vector space V with a coaction map V → V ⊗C which is compatible with the
counit and comultiplication of C. These form a category Comod-C. The forgetful
functor from C-comodules to vector spaces admits a right adjoint which sends V to
the cofree comodule V ⊗C. We regard the category Comod-C of all C-comodules
as a model category under Positselski’s model structure [Pos11], where the weak
equivalences are the morphisms with coacyclic cone and the cofibrations are the
injections. The homotopy category is the coderived category which we denote
by Dco(C). It is a triangulated category, with shift functor given by the usual
cohomological shift. We let fd(C) ↪→ Dco(C) denote the full subcategory on the
compact objects; an object of Dco(C) is compact if and only if it is weakly equiv-
alent to a finite dimensional C-comodule. Since all coalgebras are by assumption
conilpotent, we have fd(C) ≃ thickDco(C)(k), which is an equivalence we will use
often.

A contramodule over C is a vector space V with a contraaction map Hom(C, V )→
V that is compatible with the counit and comultiplication maps. These form a cat-
egory Ctrmod-C. The forgetful functor from C-contramodules to vector spaces
admits a left adjoint which sends V to the free contramodule Hom(C, V ). The cat-
egory Ctrmod-C of all contramodules is also a model category [Pos11], where the
weak equivalences are the morphisms with contraacyclic cone and the fibrations are
the surjections. The homotopy category is the contraderived category which we
denote by Dctr(C). It is also triangulated, with the same shift functor as before.

If C,D are two coalgebras then a C-D-bicomodule is defined to be a C◦ ⊗D-
comodule. We denote the category of such by C-Comod-D. Similarly, a C-D-
bicontramodule is a C◦⊗D-contramodule, and they form a category C-Ctrmod-D.

If C is a coalgebra, its linear dual C∗ is an algebra under the convolution product
f.g = m(f ⊗ g)∆, where m : k ⊗ k → k is the multiplication isomorphism. In fact,
C∗ is a pseudocompact algebra, and the linear dual is a contravariant equivalence
between the category of coalgebras and the category of pseudocompact algebras.
Similarly, the linear dual gives a contravariant equivalence between the categories of
C-comodules and pseudocompact C∗-modules. One can equivalently phrase all of
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our theorems about coalgebras in the language of pseudocompact algebras. In this
paper we will often pass between the coalgebraic language and the pseudocompact
language without comment.

The following is a key result. In its formulation, we use the notation CMD

to mean that M is a C-D-bicomodule, and CXD to mean that X is a C-D-
bicontramodule, with similar notation for one-sided co/contramodules.

Theorem 2.1 (Positselski). Let C,D,E, F be coalgebras. There are bifunctors

−□C− : D-Comod-C × C-Comod-E −→ D-Comod-E
−⊙C − : Ctrmod-C × C-Comod-D −→ Comod-D

CohomC(−,−) : (D-Comod-C)◦ × E-Ctrmod-C −→ E-Ctrmod-D
HomC(−,−) : (D-Comod-C)◦ × Comod-C −→ Ctrmod-D

HomC(−,−) : (Ctrmod-C)◦ × D-Ctrmod-C −→ D-Ctrmod

satisfying natural isomorphisms, for comodules EMC , CND, DPF , QD and con-
tramodules XE, DY C :

M□C(N□DP ) ∼= (M□CN)□DP ∈ E-Comod-F
X ⊙E (M□CN) ∼= (X ⊙E M)□CN ∈ Comod-D

CohomC(M,HomD(N,Q)) ∼= HomD(M□CN,Q) ∈ Ctrmod-E

CohomC(X ⊙E M,Y ) ∼= HomE(X,CohomC(M,Y )) ∈ D-Ctrmod

We refer to □C as the cotensor product, ⊙C as the contratensor product,
HomC as the comodule Hom, and HomC as the contramodule Hom or simply
the contrahom.

We remark that for the associativity equations to hold it is necessary that our
base ring be semisimple.

Proof. The existence of □C is [Pos10, 1.2.4] and associativity is [Pos10, 1.2.5]. The
existence of ⊙C is [Pos10, 5.1.1, 5.1.2] and the cotensor-contratensor associativity
is [Pos10, 5.2, Proposition 1]. The existence of HomC is [Pos10, 5.1.2].

For brevity we will write (U, V ) := Homk(U, V ). Let T be a C-comodule and
Z a C-contramodule. Recall that CohomC(T,Z) is defined as the coequaliser of
the natural diagram (C ⊗ T,Z) ⇒ (T,Z) given by the C-coaction on T and the
C-contraaction on Z [Pos10, 3.2.1]. Suppose that T is a D-C-bicomodule and Z is
an E-C-bicontramodule. We wish to construct a map (D ⊗ E,CohomC(T,Z)) →
CohomC(T,Z) exhibiting CohomC(T,Z) as an E-D-bicontramodule. Since Hom(D⊗
E,−) commutes with coequalisers, it suffices to show that the coequaliser diagram
defining CohomC(T,Z) is a diagram of D-E-bicontramodules. Let ρ : T → D ⊗ T
and σ : (E,Z) → Z denote the structure maps. Then the D-E-contraaction on
(T,Z) is given by the composition

(D ⊗ E, (T,Z)) ∼= (D ⊗ T, (E,Z)) (ρ,σ)−−−→ (T,Z)

and similarly for (C ⊗ T,Z). Moreover the two maps in the coequaliser are D-E-
bicontralinear, since they only use the C-co/contraactions. Hence CohomC(T,Z)
is a D-E-bicontramodule, as required. The cohom-cotensor adjunction is [Pos11,
5.2, Proposition 2].
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Let W,Y be C-contramodules, so that we have maps (C,W )→W and (C, Y )→
Y . The contrahom HomC(W,Y ) is defined as the equaliser of the natural pair of
maps (W,Y ) ⇒ ((C,W ), Y ) given by the contraactions on W and Y respectively. If
Y is in addition a D-contramodule, this diagram is a diagram of D-contramodules:
indeed if V is a vector space then as before Hom(V, Y ) is a D-contramodule under
the map

(D, (V, Y )) ∼= (V, (D,Y ))→ (V, Y ).

Since (D,−) preserves equalisers, HomC(W,Y ) is hence a D-contramodule. The
cohom-contratensor adjunction is [Pos11, 5.2, Proposition 3]. □

We next show that these functors are homotopically well-behaved. First recall
that a cofree C-comodule is a comodule whose underlying graded C-comodule is
of the form V ⊗C, with natural coaction. An injective C-comodule is a summand
of a cofree comodule. Similarly, a free C-contramodule is a contramodule whose
underlying graded C-contramodule is of the form Hom(C, V ), with natural con-
traaction, and a projective C-contramodule is a summand of a free contramodule.
We denote the full subcategory of injective C-comodules by Inj-C and the full
subcategory of projective C-contramodules by Proj-C. As before, if D is another
coalgebra, then we will abbreviate Inj-(C◦ ⊗D) by C-Inj-D and Proj-(C◦ ⊗D)
by C-Proj-D. Clearly an injective C-D-bicomodule is injective both as a C- and
a D-bicomodule, and the same is true for projective bicontramodules.

Proposition 2.2. Let C,D,E be coalgebras. The bifunctors of 2.1 restrict to
bifunctors

−□C− : D-Inj-C × C-Inj-E −→ D-Inj-E
−⊙C − : Proj-C × C-Inj-D −→ Inj-D

CohomC(−,−) : (D-Inj-C)◦ × E-Proj-C −→ E-Proj-D
HomC(−,−) : (D-Inj-C)◦ × Inj-C −→ Proj-D

HomC(−,−) : (Proj-C)◦ × D-Proj-C −→ D-Proj.

Proof. We begin with the cotensor product. If M is an injective D-C-comodule and
N is an injective C-E-comodule, then M□CN is a summand of a D-E-comodule of
the form (D⊗W⊗C)□C(C⊗V ⊗E) ∼= D⊗W⊗C⊗V ⊗E, and hence is an injective
D-E-comodule. For the contratensor product, if X is a projective C-contramodule
and M is an injective C-D-comodule, then X⊙CM is a summand of a D-comodule
of the form Hom(C, V )⊙C M ∼= V ⊗M , which is an injective D-comodule. Hence
X⊙CM is an injective D-comodule. For Cohom, if M is an injective D-C-comodule
and X is a projective E-C-contramodule, then CohomC(M,X) is a summand of
an E-D-contramodule of the form

CohomC(D ⊗ V ⊗ C,Hom(E ⊗ C,W )) ∼= CohomC(D ⊗ V ⊗ C,Hom(C,Hom(E,W )))

∼= Hom(D ⊗ V ⊗ C,Hom(E,W ))

∼= Hom(D ⊗ E,Hom(V ⊗ C,W ))

which is free. Hence CohomC(M,X) is a projective E-D-contramodule. For the co-
module hom, if M is an injective D-C-comodule and N is an injective C-comodule,
then HomC(M,N) is a summand of a D-contramodule of the form

HomC(D ⊗W ⊗ C, V ⊗ C) ∼= Hom(D ⊗W ⊗ C, V ) ∼= Hom(D,Hom(W ⊗ C, V ))
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which is free, and hence HomC(M,N) is projective. Finally, for the contramodule
hom, if X is a projective C-contramodule and Y is a projective D-C-contramodule,
then HomC(X,Y ) is a summand of aD-contramodule of the form HomC(Hom(C, V ), Y ) ∼=
Hom(V, Y ) which is projective, and hence HomC(X,Y ) is itself projective. □

Theorem 2.3 (Positselski). All of the functors of 2.1 admit derived versions, and
the derived versions of the associativity isomorphisms all hold.

Proof. Positselski [Pos10] proves that all of the functors in question admit derived
functors, defined by replacing every argument by an injective comodule or a projec-
tive contramodule as appropriate. The derived associativity isomorphisms follow
from the underived versions plus 2.2. □

Remark 2.4. Let C be a coalgebra and M,N two C-comodules. Then the vec-
tor space RHomC(M,N) is quasi-isomorphic to the dg categorical hom-complex
Dco(C)(M,N). Similarly, if X,Y are two C-contramodules then RHomC(X,Y ) is
quasi-isomorphic to Dctr(C)(X,Y ).

Theorem 2.5 (Co-contra correspondence [Pos11]). Let C be a coalgebra. Then the
functors −⊙C C and HomC(C,−) form a Quillen equivalence between Comod-C
and Ctrmod-C. Moreover they are their own derived functors, and hence the same
pair of functors give a triangle equivalence Dco(C) ≃ Dctr(C).

Remark 2.6. The monoidal cotensor product on Comod-Ce descends to a monoidal
derived cotensor product on Dco(Ce), and hence a monoidal structure on Dctr(Ce).
However, this monoidal structure does not seem to admit a simple description at
the underived level.

Remark 2.7. All of the results of this section remain true verbatim without the
assumption of conilpotency.

3. Koszul duality

We review Positselski’s formulation of Koszul duality and Guan–Holstein–Lazarev’s
formulation of bimodule Koszul duality. Using this, we define a linear dual functor
for comodules and one- and two-sided duality functors for contramodules.

In this section all (co)algebras will be (co)augmented. For brevity in our theo-
rems we will introduce the following notion. Say that a pair (A,C) consisting of
an algebra and a coalgebra is a Koszul duality pair if C ≃ BA, or equivalently
A ≃ ΩC, where B and Ω denote the bar and cobar constructions respectively.

If A is an algebra and C a coalgebra, a morphism ΩC ≃ A defines a twisting
cochain C → A by composition with the natural linear map C → ΩC. In particular,
if (A,C) is a Koszul duality pair then the quasi-isomorphism ΩC ≃ A defines a
twisting cochain τ : C → A which we call the associated twisting cochain.

3.1. One-sided duality.

Theorem 3.1 (Positselski). Let (A,C) be a Koszul duality pair.

(1) There is a Quillen equivalence between Mod-A and Comod-C.
(2) There is a Quillen equivalence between Mod-A and Ctrmod-C.
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(3) The Quillen equivalences of (1) and (2) are compatible with the co-contra
correspondence, in the sense that we obtain a commutative diagram of quasi-
equivalences of pretriangulated dg categories

D(A)

Dco(C) Dctr(C)

(4) The A-module A ∈ D(A) corresponds to k ∈ Dco(C).
(5) The A-module k ∈ D(A) corresponds to C ∈ Dco(C) and C∗ ∈ Dctr(C).
(6) The A-module A∗ ∈ D(A) corresponds to k ∈ Dctr(C).

Proof. The existence of the model structures and Quillen functors is [Pos11, §8].
Everything else is contained in [Pos11, §6.5]. □

The Quillen functors between Mod-A and Comod-C are given by twisted tensor
products, and the functors between Mod-A and Ctrmod-C are given by twisted
Homs [Pos11, §6.2]. Specifically, let τ : C → A denote the associated twisting
cochain. If M is an A-module then the corresponding C-comodule is the twisted
tensor product M⊗̃C; the underlying graded vector space is M⊗C and the differen-
tial is twisted by the term m⊗c 7→ mτ(c1)⊗c2, where we use Sweedler notation for
the comultiplication of C. The coaction on M⊗̃C is given by the natural coaction
of C on itself. Similarly, if N is a C-comodule then the corresponding A-module
is N⊗̃A, where the differential is twisted by the term n⊗ a 7→ n1 ⊗ τ(n2)a, where
we again use Sweedler notation for the coaction N → N ⊗ C. Note that M⊗̃C is
a cofree comodule.

For contramodules the twisted Hom functors are similar: if M is an A-module,
the corresponding C-contramodule is given by the twisted Hom Hom

˜
(C,M). As

a graded vector space, this agrees with Hom(C,M), and the differential is twisted
by the term which sends a function g : C → M to the function c 7→ g(c1)τ(c2).
The contraaction on Hom

˜
(C,M) is given by ∆∗. Finally, if X is a C-contramodule,

the corresponding A-comodule is Hom
˜

(A,X). This time the differential is twisted
by the map which sends a linear function g : A → X to the function A → X
which sends a ∈ A to the element π [c 7→ g(τ(c)a)], where π : Hom(C,X) → X is
the contraaction. More abstractly, this twisting term is the map defined by the
composition

Hom(A,X)
(µτ)∗−−−→ Hom(C ⊗A,X) ∼= Hom(A,Hom(C,X))

π∗−→ Hom(A,X)

where µτ : C ⊗ A → A sends c ⊗ a to τ(c)a. Note that Hom
˜

(C,M) is a free
contramodule.

Corollary 3.2. If (A,C) is a Koszul duality pair then there are algebra quasi-
isomorphisms

A ≃ REndDco(C)(k)

REndA(A∗) ≃ REndDctr(C)(k)

C∗ ≃ REndA(k)

Proof. The first two quasi-isomorphisms are a consequence of Koszul duality be-
ing a quasi-equivalence of dg categories. The third is similar: firstly, we obtain
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REndA(k) ≃ REndDco(C)(C). Because C is an injective C-comodule, we may com-
pute the derived endomorphism algebra as HomC(C,C) ≃ C∗. □

Remark 3.3. In particular, the hom-tensor adjunction gives us a vector space quasi-
isomorphism REndDctr(C)(k) ≃ A∗∗.

3.2. Bimodule duality. Guan, Holstein and Lazarev showed that Koszul duality
holds for bimodules:

Theorem 3.4 ([GHL23]). Let (A,C) and (A′, C ′) be Koszul duality pairs. Then
(A⊗A′, C ⊗ C ′) is also a Koszul duality pair.

In particular, with notation as above there are induced triangle equivalences
D(A-Mod-A′◦) ≃ Dco(C-Comod-C ′◦) ≃ Dctr(C-Ctrmod-C ′◦). This theorem
is not a simple consequence of one-sided Koszul duality, since the bar and cobar
constructions do not in general preserve the tensor product.

Putting C ′ = C◦ in the above theorem we obtain:

Corollary 3.5. If (A,C) is a Koszul duality pair then so is (Ae, Ce).

In particular, if (A,C) is a Koszul duality pair then there are triangle equivalences
D(Ae) ≃ Dco(Ce) ≃ Dctr(Ce).

Remark 3.6. The above triangle equivalences enhance to quasi-equivalences of pre-
triangulated dg categories, and in [GHL23] this is used to compare the Hochschild
theory of A with that of the pseudocompact algebra C∗.

If (A,C) is a Koszul duality pair andM is an A-module then we denote byM ! the
corresponding C-comodule across the Koszul duality equivalence D(A) ≃ Dco(C).
Similarly if N is a C-comodule then we let N ! denote the corresponding A-module.
We abuse this notation to also apply to bimodule Koszul duality.

Proposition 3.7 (Monoidality of bimodule Koszul duality). Let (A,C), (A′, C ′)
and (A′′, C ′′) be Koszul duality pairs. Let M be an A′-A-bimodule and let N be an
A-A′′-bimodule. There is a natural weak equivalence(

M ⊗L
A N

)! ≃M !□L
CN

!

of C ′-C ′′-bicomodules.

Proof. Since bimodule Koszul duality is an equivalence of triangulated categories,
it suffices to prove the equivalent statement that if M,N are two bicomodules then
there is a natural weak equivalence (M□L

CN)! ≃ M ! ⊗L
A N !. To prove this, we

may first assume that both M and N are injective as C-comodules. Since injective
comodules are retracts of cofree comodules, it actually suffices to assume that both
M and N are cofree C-comodules. A cofree bicomodule is in particular cofree on
either side, so we may in fact assume that both M and N are cofree bicomodules.
So put M = C ′ ⊗ U ⊗ C and N = C ⊗ V ⊗ C ′′ for U, V two vector spaces. We
then have M□L

CN ≃ C ′ ⊗ W ⊗ C ′′, where W is the vector space U ⊗ C ⊗ V .
Hence (M□L

CN)! is the bimodule C ′! ⊗W ⊗ C ′′!. On the other hand, M ! ⊗ N ! is
C ′!⊗U ⊗C !⊗L

A C
!⊗V ⊗C ′′!. Hence it suffices to prove that the two vector spaces

W and U ⊗ C ! ⊗L
A C

! ⊗ V are quasi-isomorphic. But to prove this it is enough to
show that the vector spaces C and C !⊗L

A C
! are quasi-isomorphic. If τ denotes the

associated twisting cochain for the pair (A,C), then the derived tensor product is
C ⊗τ A ⊗L

A A ⊗τ C. As a vector space, this simplifies to C ⊗τ A ⊗ C, but since
C ⊗τ A ≃ k, we obtain the desired quasi-isomorphism. □
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Corollary 3.8. Let (A,C) be a Koszul duality pair. Then there are quasi-isomorphisms
A ≃ k□L

Ck and C ≃ k ⊗L
A k of vector spaces.

Proof. This follows from 3.7 by putting A′ = A′′ = k, C ′ = C ′′ = k, and M = N =
A and M = N = k respectively. □

The following is a key computation:

Proposition 3.9. Let (A,C) be a Koszul duality pair. Across the derived equiv-
alence D(Ae) ≃ Dco(Ce), the diagonal bimodule A corresponds to the diagonal
bicomodule C.

Proof. By 3.7, if N is a C-bicomodule then there is a natural weak equivalence
A!□L

CN ≃ N . The claim follows by putting N = C. □

Corollary 3.10. Let (A,C) be a Koszul duality pair. Across the derived equivalence
D(Ae) ≃ Dctr(Ce), the bimodule A∗ corresponds to the diagonal bicontramodule C∗.

Proof. Across Koszul duality, the bimodule A∗ corresponds to the bicontramodule
Hom
˜

(Ce, A∗). The hom-tensor adjunction gives an isomorphism of graded vector
spaces Hom(Ce, A∗) ∼= (Ce ⊗A)∗, and twisting the differentials gives an isomor-
phism Hom

˜
(Ce, A∗) ∼=

(
Ce⊗̃A

)∗ of vector spaces. Moreover, the Ce-contramodule
structure on both sides comes from the Ce-coaction on itself, and hence we have
an isomorphism Hom

˜
(Ce, A∗) ∼=

(
Ce⊗̃A

)∗ of C-bicontramodules. However, 3.9
shows that the bicomodule Ce⊗̃A is weakly equivalent to the bicomodule C. Hence
Hom
˜

(Ce, A∗) is weakly equivalent to C∗, as desired. □

3.3. Linear duals for comodules. Let C be a coalgebra and M a right C-
comodule. If M is finite dimensional then the linear dual M∗ is a left C-comodule:
a coaction map M →M ⊗C is equivalent to a map M ⊗M∗ → C, which is in turn
equivalent to a map M∗ → C ⊗M∗ making M∗ into a comodule.

Proposition 3.11. If (A,C) is a Koszul duality pair then there is a commutative
diagram of functors

D(A)◦ D(A◦)

Dco(C)◦ Dco(C◦)

RHomA(−,A)

≃ ≃

(−)∗

Moreover, on objects the functor (−)∗ can be described as follows. If M is a C-
comodule, write M = lim−→i

Mi where the Mi range over the finite dimensional sub-
comodules of M . Then M∗ := holim←−−−i

M∗
i .

Proof. Consider the composition

F : Dco(C)◦
≃−→ D(A)◦

RHomA(−,A)−−−−−−−−−→ D(A◦)
≃−→ Dco(C◦)

which manifestly makes the diagram commute. Since RHomA(−, A) preserves ho-
motopy limits, so does F . Observing that the colimit M = lim−→i

Mi is a homotopy
limit in Dco(C)◦, it remains to show that for finite dimensional comodules the func-
tor F agrees with the linear dual. Since RHomA(A,A) ≃ A we have F (k) ∼= k ∼= k∗.
Since we have fd(C) ≃ thickDco(C)(k), it suffices to check that the induced map
Fkk : REndC(k)→ REndC◦(k)◦ on derived endomorphisms is a quasi-isomorphism.
But across Koszul duality this is identified with idA. □
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We refer to M∗ as the linear dual of M . We warn that M∗ depends on the
C-comodule structure of M , and not just on the underlying vector space, since
limits in C-comodules are not computed by the underlying vector spaces. For a
concrete example of this, see 3.12 below.

Observe that, across the contravariant equivalence between comodules and pseu-
docompact modules, the above also gives a linear dual functor for pseudocompact
modules. Concretely, if A is a pseudocompact algebra and M a pseudocompact
A-module, then we can write M ∼= lim←−i

Mi with each Mi finite dimensional. Then
we have M∗ := holim−−−→i

M∗
i , where the homotopy colimit is taken in the category of

pseudocompact modules.

Example 3.12. Consider the pseudocompact algebra A := kJtK with t in degree zero,
equipped with its usual inverse limit topology. We will compute A∗ ≃ A[1]. To do
this, put A ∼= lim←−n

An where An := A/tn. We compute A∗
n ≃ An: explicitly, if we

take the basis {t0, . . . , tn−1} for An, with corresponding dual basis {δt0 , . . . , δtn−1},
then the k-linear map ti 7→ δtn−i−1 is an A-linear isomorphism. The projection
map An+1 → An induces the identity on functionals, and hence across the above
isomorphism corresponds to multiplication by t. Hence A∗ is the homotopy colimit
in pseudocompact A-modules of the system

A1
t−→ A2

t−→ A3
t−→ · · ·

We can resolve each An by the two-term complex A
tn−→ A, with the rightmost

A placed in degree zero. The above homotopy colimit becomes the colimit of the
system of pseudocompact A-modules

A A A · · ·

A A A · · ·

id

t

id

t2

id

t3

t t t

The colimit of the degree −1 part is obviously just A. The colimit of the degree
zero part, taken in discrete A-modules, is A[t−1]. The pseudocompactification of
this module is zero, and hence the whole colimit is A[1], as required. Since A is
Koszul dual to the discrete algebra R := k[ε]/ε2 with ε in cohomological degree 1,
the above calculation is Koszul dual to the fact that RHomR(k,R) ≃ k[−1]. More
generally, if t is placed in degree n, the same calculation shows that A∗ ≃ A[1−n].
We remark that this calculation shows that A is a (1−n)-Frobenius coalgebra (see
8.1 for the definition). This computation is generalised in 8.7.

Remark 3.13. The ‘naïve’ linear dual functor is well defined on the full subcategory
fd(C) ↪→ Dco(C) of compact objects, and the full linear dual functor of 3.11 can be
obtained as a homotopy Kan extension of the naïve linear dual along the inclusion.

If M is a Ce-comodule we denote the Ce-comodule M∗ by D(M), to avoid
confusion between one- and two-sided linear duals; as before the underlying C◦-
comodule of D(M) need not be M∗. Once again, we extend this definition to
pseudocompact bimodules in the obvious manner.

Example 3.14. The calculation 3.12 shows that if A is the pseudocompact algebra
kJtK with t placed in degree n, then D(A) ≃ A[1−n] as pseudocompact bimodules.
Hence A is a (1− n)-symmetric coalgebra (see 8.1 for the definition).
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Proposition 3.15. If (A,C) is a Koszul duality pair then there is a commutative
diagram of functors

D(Ae)◦ D(Ae)

Dco(Ce)◦ Dco(Ce).

RHomAe (−,Ae)

≃ ≃

D

Proof. By 3.11 we have a commutative diagram

D(Ae)◦ D(Ae)

Dco(B(Ae))◦ Dco(B(Ae)◦).

RHomAe (−,Ae)

≃ ≃
(−)∗

So we need only check that the diagram

Dco(B(Ae))◦ Dco(B(Ae)◦)

Dco(Ce)◦ Dco(Ce).

≃

(−)∗

≃

D

commutes, where the vertical equivalences are given by bimodule Koszul duality.
To see this latter claim, proceed as in the proof of 3.11: it suffices to check the
claim on the comodule k, which is easy. □

Remark 3.16. Since RHomA(−, A) induces a contravariant equivalence between
PerfA and PerfA◦, the linear dual functor induces a contravariant equivalence
between thickDco(C)(k) and thickDco(C◦)(k). Since the category thickDco(C)(k)
agrees with the category fd(C) of all compact C-comodules, the linear dual functor
on DcoC restricts to a contravariant equivalence between fd(C) and fd(C◦).

Remark 3.17. Let M be a C-bicomodule and let M∗ denote the linear dual of
the C-comodule M . Let J denote the diagram of sub-C-bicomodules of M and
let J∗ denote the diagram of C-bicomodules obtained by taking the linear dual
levelwise. Since every finite dimensional sub-C-comodule of M is contained in a
sub-C-bicomodule, the diagram J is cofinal in the diagram of sub-C-comodules of
M . If U denotes the forgetful functor from C-bicomodules to C-comodules, then
we have D(M) ≃ holim←−−− J

∗ whereas M∗ ≃ holim←−−−UJ
∗. Since U does not preserve

(homotopy) limits, the underlying C-comodule of D(M) need not be M∗. For a
related example, consider the pseudocompact dg algebras A := k and A′ := kJxK,
with x in degree zero, and let M be the pseudocompact A⊗̂A′-bimodule A′. The
linear dual of M in the category of pseudocompact A⊗̂A′-bimodules is M [1], as
3.12 shows. On the other hand, the linear dual of M , taken in the category of
pseudocompact A-bimodules, is the vector space

kJxK[x−1]

kJxK

concentrated in degree zero; this can be extracted from the proof of 3.12 together
with the fact that the pseudocompact derived category of k is simply the usual
derived category of vector spaces.
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3.4. One- and two-sided duals for contramodules. Our main goal in this
section is to prove the following theorem, which may be of independent interest:

Theorem 3.18 (One-sided duality). Let (A,C) be a Koszul duality pair. Then
there is a commutative diagram of functors

Dctr(C)
◦

Dctr(C◦)

D(A)
◦

D(A◦).

RHomC(−,C∗)

≃ ≃

M 7→M∗

Proof. Recall that if M is an A-module, the corresponding C-contramodule is the
twisted Hom, denoted by Hom

˜
(C,M). It suffices to show that we have natural

weak equivalences of contramodules

RHomC(Hom
˜

(C,M), C∗) ≃ Hom
˜

(C,M∗).

Since Hom
˜

(C,M) is a projective contramodule, we can compute

RHomC(Hom
˜

(C,M), C∗) ≃ HomC(Hom
˜

(C,M), C∗).

Recall that if V is a vector space and X is a C-contramodule, then the natural
isomorphism HomC(Hom(C, V ), X) → Hom(V,X) sends a C-contralinear map F
to the function v 7→ F (vη), where η : C → k is the counit and v : k → V denotes
the function that sends 1 ∈ k to v. Hence using the hom-tensor adjunction we
obtain isomorphisms of vector spaces

HomC(Hom(C,M), C∗) ∼= Hom(M,C∗)

∼= (M ⊗ C)∗

∼= Hom(C,M∗)

and one can check that the composite isomorphism HomC(Hom(C,M), C∗) →
Hom(C,M∗) sends a C-contralinear map F to the map C → M∗ which sends
c to the map m 7→ F (mη)(c). This gives us an isomorphism of graded vector spaces

Ξ : HomC(Hom
˜

(C,M), C∗)♯ → Hom
˜

(C,M∗)♯

and so we simply need to check compatibility of Ξ with the differentials. The source
of Ξ acquires a twist from the A-module structure on M : the differential at F is
twisted by the term Fϕ, where ϕ is the endomorphism of Hom(C,M) which sends
a function g to c 7→ g(c1)τ(c2), where τ is the associated twisting cochain. On the
target of Ξ, the differential is twisted by the analogous map ψ, which sends a map
G to the map c 7→ G(c1)τ(c2). So we need to check that

Ξ(Fϕ) = ψ(ΞF )

which follows since both are the map that sends c to the mapm 7→ (F [(mτ(c2))η]) (c1).
□

Remark 3.19. Say that a C-comoduleM is homotopy quasi-finite (hqf for short)
if, for all finite dimensional comodules N , the vector space RHomC(N,M) is an
element of pvd(k). This is a homotopical version of Takeuchi’s definition of a quasi-
finite comodule [Tak77]. Let hqf co(C) denote the full subcategory of Dco(C) on
the hqf comodules. Note that we have an equivalence hqf co(C) ≃ pvd (Dco(C)).
If (A,C) is a Koszul duality pair, then across Koszul duality the category hqf co(C)
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corresponds to pvd(A): this is because finite dimensional comodules correspond to
perfect A-modules, and V ∈ pvd(A) if and only if RHomA(Perf (A), V ) ∈ pvd(k).
Similarly, say that a contramodule X is hqf precisely when the corresponding co-
module X ⊙C C is; the hqf contramodules form a full subcategory hqf ctr(C) of
Dctr(C) that can be identified with pvdDctr(C). Since the linear dual is an equiv-
alence pvd(A)◦ → pvd(A◦), by 3.18 it follows that the functor RHomC(−, C∗)
gives a contravariant equivalence between hqf ctr(C)◦ and hqf ctr(C◦).

Proposition 3.20 (Two-sided duality). Let (A,C) be a Koszul duality pair. If R =
(Ce)∗ denotes the regular C-bicontramodule, then there is a commutative diagram
of functors

Dctr(Ce)
◦

Dctr(Ce)

D(Ae)
◦

D(Ae).

RHomCe
(−,R)

≃ ≃

M 7→M∗

Proof. Letting A′ be the algebra Ω(Ce), the Koszul duality pair (Ce, A′) gives by
3.18 a commutative diagram

Dctr(Ce)
◦

Dctr(Ce◦)

D(A′)
◦

D(A′◦).

RHomCe
(−,R)

≃ ≃

M 7→M∗

Bimodule Koszul duality furthermore yields a commutative diagram

D(A′)
◦

D(A′◦)

D(Ae)
◦

D(Ae◦)

≃

M 7→M∗

≃

M 7→M∗

and hence pasting these together we obtain a commutative diagram

Dctr(Ce)
◦

Dctr(Ce◦)

D(Ae)
◦

D(Ae◦).

RHomCe
(−,R)

≃ ≃

M 7→M∗

Since both Ce and Ae are isomorphic to their own opposites, identifying the right-
hand vertical map with the natural equivalence Dctr(Ce) → D(Ae) yields the de-
sired result. □

4. Invertible modules and twists

The goal of this section is to record some results about invertible bimodules,
which we will later use to show that derived Frobenius algebras admit Nakayama
automorphisms. We define derived Picard groups for algebras and coalgebras, and
show that they are preserved across Koszul duality. We pay special attention to
homotopy automorphisms. Derived Picard groups have been well studied in the
literature, including but not limited to the papers [RZ03, Yek04, Kel04, Opp24];
our treatment here is quite elementary.
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4.1. Derived Picard groups. Let A be an algebra. An A-bimodule X is invert-
ible if there exists another A-bimodule Y such that X ⊗L

A Y ≃ A ≃ Y ⊗L
A X.

We write Y = X−1, with the understanding that Y is only unique up to a quasi-
isomorphism of bimodules.

If X is invertible, then the functor FX := − ⊗L
A X is an autoequivalence of

D(A), with inverse −⊗L
A X

−1. On the other hand the inverse of FX is necessarily
its adjoint RHomA(X,−). This shows that RHomA(X,−) commutes with direct
sums, and hence that X is perfect as a right A-module; a similar argument shows
thatX is also a perfect left A-module. Composing FX with its inverse yields natural
quasi-isomorphisms A ≃ REndA(X) and RHomA(X,A) ⊗L

A X ≃ A, and a similar
argument with left modules shows that in fact X−1 ≃ RHomA(X,A).

The derived Picard group DPic(A) is the group whose elements are the quasi-
isomorphism classes of invertible A-bimodules, with group operation given by ⊗L

A.
The identity element is A, the diagonal bimodule. The assignment X 7→ X ⊗L

A −
defines a group morphism from DPic(A) to Aut(D(A)), the group of exact autoe-
quivalences ofD(A). In the future we will write XM := X⊗L

AM andMX :=M⊗L
AX

for brevity.

Proposition 4.1. Let A be an algebra and X an A-bimodule. The following are
equivalent:

(1) X is invertible.
(2) The functor −⊗L

A X is an autoequivalence of PerfA.
(3) The functor X ⊗L

A − is an autoequivalence of Perf (A◦).
(4) The right module X is a thick generator of PerfA and the natural map

A→ REndA(X) is a quasi-isomorphism.
(5) The left module X is a thick generator of Perf (A◦) and the natural map

A◦ → REndA◦(X) is a quasi-isomorphism.

Proof. We show that (1), (2), and (4) are equivalent; the other cases are similar.
We have already observed that (1) implies (2). For the converse, if −⊗L

AX is an au-
toequivalence then its inverse is necessarily given by its adjoint −⊗L

ARHomA(X,A)
and it now follows that X is invertible. If (2) holds then since the autoequivalence
−⊗L

AX takes generators to generators, X is a generator of PerfA. We have already
observe that for an invertible module, the natural map is a quasi-isomorphism, so
(4) holds. Conversely, if (4) holds then the functor − ⊗L

A X gives an equivalence
between Perf (A) and Perf (REndA(X)) ≃ thickA(X) ≃ Perf (A). □

If C is a coalgebra, say that a C-bicomodule X is invertible if there exists
another bicomodule Y such that X□L

CY ≃ C ≃ Y□L
CX. As above, we define the

derived Picard group of C to be the group DPic(C) whose elements are the
weak equivalence classes of invertible bicomodules, with group operation given by
the derived cotensor product. As before, if X is an invertible bicomodule and N
is any comodule (left or right as appropriate) then we write NX := N□L

CX and
XN := X□L

CN .
By 3.7, if (A,C) is a Koszul duality pair then the two monoidal triangulated

categoriesD(Ae) andDco(Ce) are equivalent. We immediately obtain the following:

Proposition 4.2. If (A,C) is a Koszul duality pair then there is an isomorphism
DPic(A) ∼= DPic(C).
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Example 4.3. If A is an augmented algebra, then an ∞-automorphism of A is a
coalgebra automorphism θ of C := BA. If Cθ denotes the C-bicomodule C, where
the left coaction is as usual and the right coaction is twisted by θ, then Cθ is an
invertible bicomodule (with inverse Cθ−1). Hence θ defines a class Cθ ∈ DPic(C) ∼=
DPic(A).

We can also transport the action of DPic(C) on Dco(C) across the co-contra
correspondence:

Definition 4.4. Let C be a coalgebra and N a C-contramodule. If X is an invert-
ible C-bicomodule we put NX := RCohomC(X

−1, N).

Proposition 4.5. Let C be a coalgebra, M a C-comodule, and N a C-contramodule.
Then there are natural weak equivalences

HomC(C,MX) ≃ HomC(C,M)X

(NX)⊙ C ≃ (N ⊙ C)X
of contramodules and comodules respectively.

Proof. By the co-contra correspondence, −⊙C and HomC(C,−) are inverse equiv-
alences, so the first and second equations are equivalent. We focus on the first.
Letting Y be the inverse of X, the dg functors −□L

CX and −□L
CY are inverse,

which gives us a natural weak equivalence HomC(C,MX) ≃ RHomC(Y,M). By
adjunction we have natural weak equivalences

HomC(C,M)X := RCohomC(Y,HomC(C,M)) ≃ RHomC(Y,M)

and we are done. □

Remark 4.6. One can say that a C-bicontramodule X is invertible precisely when
its corresponding C-bicomodule X ⊙Ce Ce is. The unit invertible bicontramodule
can then be written as U = RHomCe(Ce, C).

4.2. Twists. Recall that if A is an algebra, a homotopy endomorphism of A is
an endomorphism in the homotopy category of algebras and a homotopy auto-
morphism of A is an automorphism of A in the homotopy category of algebras. A
homotopy endomorphism of A can be represented by a map ϕ : Ã→ A where Ã is
a cofibrant algebra resolution of A. Given such a ϕ, one obtains an endofunctor of
D(Ae) which sends M to M ⊗L

Ã
A. We denote the image of A under this functor by

Aϕ, so that M ⊗L
Ã
A ≃M ⊗L

A Aϕ. We abbreviate this module by Mϕ :=M ⊗L
A Aϕ

and call it the right twist of M by ϕ. If ϕ was a quasi-isomorphism, then the
induced endofunctor ϕ is an autoequivalence. Similarly, via considering the functor
M 7→ A⊗L

Ã
M one gets a left twist ϕM of M .

In particular, if ϕ is a homotopy automorphism of A, then ϕA is an invertible
bimodule, with inverse ϕ−1A. The assignment ϕ 7→ ϕA determines a group mor-
phism hAut(A) → DPic(A), where hAut(A) is the group of automorphisms of A
in the homotopy category of algebras. More generally, there is a monoid morphism
from hEnd(A) to the monoid of quasi-isomorphism classes of A-bimodules under
the derived tensor product.

Example 4.7. Let ϕ : A → A be an algebra endomorphism of A, and regard it as
a homotopy endomorphism. Then the twist Mϕ is (quasi-isomorphic to) the A-
bimodule whose underlying vector space is M , and whose right A-action is twisted
by the action of ϕ.
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The following proposition will allow us to deduce the existence of Nakayama
automorphisms for derived Frobenius algebras (for the discrete version, see [Lam99,
§16E]).

Proposition 4.8. Let A be an algebra. Let M be an A-bimodule with a quasi-
isomorphism M ≃ A of right A-modules. Then there exists a homotopy endo-
morphism ϕ of A such that M ≃ ϕA as A-bimodules. The map ϕ is a homotopy
automorphism if and only if the A-action A→ REndA(M) is a quasi-isomorphism.

Proof. Pick an A-bimodule cofibrant replacement M̃ of M , so that there are homo-
topy inverse maps f : A→ M̃ and g : M̃ → A. These induce a quasi-isomorphism
q : EndA(A) ∼= A→ EndA(M̃) of endomorphism algebras, and viewing M̃ as a left
A-module via q makes f into an A-bilinear quasi-isomorphism. The left A-action ρ
on M̃ hence gives a diagram A

ρ−→ End(M̃)
q←− A. This diagram gives a homotopy

endomorphism ϕ of A such that ϕq ≃ ρ as morphisms in the homotopy category
of algebras. It follows that f is an A-bilinear quasi-isomorphism from ϕA to M , as
required. Since q is a quasi-isomorphism, ρ is a quasi-isomorphism if and only if ϕ
is a homotopy automorphism. □

Remark 4.9. Suppose that A → k is an augmented algebra, so that one has A ≃
k ⊕ Ā as A-bimodules. Hence the same holds for M as a right module, which
makes REndA(M), and hence EndA(M̃), an augmented algebra. If one chooses f
and g to respect these direct sum decompositions, then q becomes a morphism of
augmented algebras. If ρ is a map of augmented algebras, then one can choose ϕ
to be a morphism in the homotopy category of augmented algebras.

Corollary 4.10. Let A be an algebra and let M be an A-bimodule with a right
A-linear quasi-isomorphism A ≃M . The following are equivalent:

(1) M is invertible.
(2) There exists an invertible X such that A ≃MX as bimodules.
(3) There exists an invertible X such that A ≃ XM as bimodules.
(4) The left action A→ REndA(M) is a quasi-isomorphism.
(5) There exists a homotopy automorphism ϕ of A such that A ≃ ϕM as bi-

modules.

Proof. The equivalence of (1), (2), and (3) is straightforward and does not use the
assumption that M ≃ A. Clearly (5) implies (3). If M is invertible and N is any
bimodule, then since N 7→ NM is a dg autoequivalence, we have natural quasi-
isomorphisms REndA(NM ) ≃ REndAN and in particular A ≃ REndA(M). Hence
(1) implies (4). Finally, (4) implies (5) by 4.8. □

5. Smoothness, properness, regularity & locality

We develop the above concepts for algebras and coalgebras, then we compare
them across Koszul duality. We deduce some properties of the ‘derived completion’
functor A 7→ A! := (BA)∗; in particular that A 7→ A!! preserves smoothness and
properness when A!! is viewed as a pseudocompact algebra. We also give partial
converses.

5.1. Properness and locality for algebras. In this section we study proper
algebras. Recall that A is proper if and only if H∗(A) is a finite dimensional
graded vector space; this is equivalent to A ∈ pvd(A). It is clear that A is proper
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if and only if there is an inclusion Perf (A) ⊆ pvd(A). A finite dimensional algebra
is clearly proper. Not all proper algebras have finite dimensional models, due to an
example of Efimov [Efi20, 5.4]. However, connective algebras are better behaved:

Theorem 5.1 ([RS22, 3.12]; after [Orl20, 2.20]). If A is a proper connective algebra
then A is quasi-isomorphic to a finite dimensional algebra.

Definition 5.2. Let A → k be an augmented algebra. Say that A is homologi-
cally local if pvd(A) = thickD(A)(k).

We will often abbreviate ‘homologically local’ to simply ‘local’. For discrete
algebras coming from algebraic geometry, this definition is equivalent to the usual
one:

Proposition 5.3. Let A be a noetherian discrete commutative k-algebra and A→ k
an augmentation. Then A is a local ring if and only if A is homologically local.

Proof. Let M be a finite dimensional A-module, and so necessarily of finite length
(i.e. both noetherian and Artinian; see [Eis95, §2.4] for more about length). Hence
M has a finite composition series with subquotients of the form A/mi with each
mi maximal. Since a perfectly valued A-module is a finite iterated cone between
finite dimensional modules, it follows that pvd(A) is contained in the subcategory
thickD(A){A/m : m ∈ MaxSpec(A)}. If A is local, then this latter subcategory is
precisely thick(k), and hence A is homologically local. Conversely, if A is not local,
let m be the kernel of the augmentation A → k and choose a closed point p ̸= m.
Then k(p) ∈ pvd(A) by the Nullstellensatz. But by construction k(p)m = 0 and
hence k(p) /∈ thick(k). □

Say that a discrete finite dimensional algebra A is local if the maximal semisim-
ple quotient of A is a copy of k. This is compatible with our earlier definition:

Proposition 5.4. Let A be a connective algebra such that H0A is finite dimen-
sional. Then A is homologically local if and only if H0A is local.

Proof. For brevity put B := H0A. Since A is connective, D(A) admits a t-structure
with heart Mod-B. First assume that B is local. If M is a finitely generated
B-module, filtering M by its radical filtration shows that M can be written as
an iterated extension between copies of k. In other words, we have a sequence
k = M1, . . . ,Mm = M of B-modules and short exact sequences 0→ k →Mn+1 →
Mn → 0. These short exact sequences give exact triangles k → Mn+1 → Mn →
in D(B) showing inductively that each Mn, and hence M , are in thickD(B)(k).
Since A is connective, the natural t-structure on D(A) yields a triangle functor
D(B)→ D(A) and hence M ∈ thickD(A)(k). To finish, take N ∈ pvd(A); viewing
N as a finite iterated cone between finitely generated B-modules (namely the HiN)
we see that N ∈ thickD(A)(k) as required. Conversely if B is not local, write the
maximal semisimple quotient of B as S ⊕ k where S ̸∼= 0. Then the A-module S is
an object of pvd(A) which is not in thick(k). □

It will also be convenient for us to introduce some slightly stronger notions of
properness:

Definition 5.5. Let A be an augmented algebra. Say that A is proper local if
A ∈ thickD(A)(k). Say that A is strongly proper local if A ∈ thickD(Ae)(k).
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If A is an augmented algebra, then it is easy to see that

A strongly proper local =⇒ A proper local ⇐= A proper and homologically local

and if A is connective then these implications can be reversed:

Proposition 5.6. Let A be a connective algebra. The following are equivalent:
(1) A is proper local.
(2) A is strongly proper local.
(3) A is proper and homologically local.

Proof. If (1) holds then by [RS22, 5.7] combined with 5.4 we see that (2) holds.
Since (2) clearly implies (1) we see that (1) and (2) are equivalent. Moreover,
certainly (3) implies (1) so we just need to show that (1) implies (3). To do this,
certainly if (1) holds then A is proper, so we just need to prove that it is local. By
5.4 we only need to prove that the finite dimensional algebra H0A is local. But
by assumption it is an iterated extension between copies of k, and hence must be
local. □

Remark 5.7. We are not aware of an example of a proper local nonconnective
algebra which is not strongly proper local, but we expect Efimov’s example [Efi20,
5.4] to have this property.

We finish this section with a locality property that will be useful to us later.
If T is a triangulated category, recall that a thick subcategory C ↪→ T is said

to be localising if it is closed under infinite direct sums and colocalising if it is
closed under infinite products. If X is a set of objects of T , recall that LocT (X )
denotes the smallest localising subcategory containing X , and dually ColocT (X )
denotes the smallest colocalising subcategory containing X . The objects of X are
generators for LocT (X ) and cogenerators for ColocT (X ).

Definition 5.8. Say that an augmented algebra A is homologically complete
local if A ∈ ColocD(A)(k).

As before we will frequently abbreviate ‘homologically complete local’ to ‘com-
plete local’. Clearly a proper local algebra is complete local.

Remark 5.9. If (A,m, k) is a commutative noetherian regular local ring then Loc(k)
is the derived category of m-torsion modules, and Coloc(k) is the derived category
of derived m-complete modules.

5.2. Smoothness and regularity for algebras.

Definition 5.10. An algebra A is homologically smooth or just smooth if A
is a perfect A-bimodule.

Remark 5.11. If A is a commutative finite type discrete k-algebra, then A is ho-
mologically smooth if and only if the unit morphism k → A is smooth. When k
is a perfect field, these are in turn equivalent to A being regular, which is also
equivalent to A having finite global dimension.

Remark 5.12. If A is a discrete algebra, then gl.dim. Ae ≥ 2 gl.dim. A. If k is a
perfect field and A is finite dimensional, then this inequality becomes an equal-
ity [Aus55, Theorem 16]; in particular if A has finite global dimension then A is
homologically smooth.
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Following [KS22], we say that an algebra A is hfd-closed if there is an inclusion
pvd(A) ⊆ PerfA. This is often a convenient replacement for smoothness, as the
following proposition shows:

Proposition 5.13. Let A be an algebra.
(1) If A is smooth then A is hfd-closed.
(2) If A is (quasi-isomorphic to) a finite dimensional algebra, then A is smooth

if and only if it is hfd-closed.

Proof. Claim (1) is standard: if M ∈ pvdA and P is a perfect A-bimodule then
then M ⊗L

A P ∈ PerfA; it is enough to show this for P = Ae which is clear. In
particular, if A is smooth then we may take P = A. Claim (2) follows from a
theorem of Orlov [Orl23, 1.11]. □

Remark 5.14. If A is an augmented algebra with Koszul dual coalgebra C = BA,
then A is hfd-closed if and only if there is an inclusion hqf coC ⊆ thickDco(C)(k).

Definition 5.15. A morphism of algebras A→ l is regular if it makes l into a per-
fect A-module. We say that an augmented algebra is regular if the augmentation
morphism is regular. This notion is called g-regular in [GS20].

Smoothness and regularity are closely related:

Lemma 5.16. Let A be an augmented algebra.
(1) If A is regular local then it is hfd-closed.
(2) If A is hfd-closed then it is regular.
(3) If A is smooth then it is regular.

Proof. Follows easily from the definitions. □

Lemma 5.17. Let A be a discrete commutative finite type k-algebra and p a prime
ideal of A, with residue field l. If Ap is smooth then Ap → l is regular. If Ap is
regular and l is a separable extension of k then Ap is smooth.

Proof. It is standard that Ap → l is regular exactly when Ap is a regular local ring.
Since A was finite type, it is smooth at p if and only if it is geometrically regular
at p, and the result follows. □

Corollary 5.18. Let A → k be a discrete commutative augmented finite type k-
algebra with augmentation ideal m. Then the local ring Am is smooth if and only if
Am → k is regular.

Proposition 5.19. Let A be quasi-isomorphic to a finite dimensional augmented
algebra, and suppose in addition that A is local. Then A is regular if and only if is
is smooth.

Proof. If A is smooth then it is regular. Conversely, if A is regular then assume
without loss of generality that A is finite dimensional. Then it is smooth by [Orl23,
3.12]. □

5.3. Properness for coalgebras. The notion of properness for coalgebras is more
subtle than that for algebras. Indeed, properness was earlier defined in terms of
the isomorphism-reflecting forgetful functor D(A) → D(k), whereas the forgetful
functor Dco(C) → D(k) does not reflect isomorphisms. However, it is possible to
identify a large subcategory of Dco(C) where this does hold:
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Proposition 5.20. Let C be a coalgebra. The natural map ColocDco(C)(C)→ D(k)
reflects isomorphisms.

Proof. Let M ∈ ColocDco(C)(C) be an acyclic comodule. We wish to show that
M is coacyclic. Following [Pos11, 5.5], we see that the full subcategory of Dco(C)
consisting of the acyclic C-comodules is precisely the left orthogonal to C. But this
is also the left orthogonal to ColocDco(C)(C). So M is simultaneously an object
of both ColocDco(C)(C) and its left orthogonal, and hence is zero in Dco(C), as
required. □

Remark 5.21. There is a natural localisation functor Dco(C) → D(Comod-C)
whose kernel consists of the acyclic comodules. Under the assumption of Vopěnka’s
principle, there is a natural equivalence ColocDco(C)(C) ≃ D(Comod-C) so that
ColocDco(C)(C) is actually the largest subcategory of Dco(C) for which the natural
functor to D(k) reflects isomorphisms. See [Pos11, 5.5, Note added three years
later] for further discussion.

Lemma 5.22. Let (A,C) be a Koszul duality pair. Then A is complete local if and
only if fdC ⊆ ColocDco(C)(C).

Proof. Since colocalising subcategories are thick, A is complete local if and only if
Perf (A) ⊆ ColocD(A)(k). Across Koszul duality this corresponds to the desired
statement. □

Definition 5.23. Let C be a coalgebra. Say that C is proper if C ∈ fd(C). Say
that C is strongly proper if C ∈ fd(Ce).

A finite dimensional C-bicomodule is certainly a finite dimensional C-module,
so a strongly proper coalgebra is proper. If C is a proper coalgebra then certainly
C ∈ pvd(k).

Remark 5.24. In [HR24], different terminology is used: their ‘proper’ corresponds
to our ‘strongly proper’.

Proposition 5.25. Let (C,A) be a Koszul duality pair.
(1) C is proper if and only if A is regular.
(2) C is strongly proper if and only if A is smooth.
(3) If A is complete local, the following are equivalent:

(a) C is proper.
(b) C is quasi-isomorphic to a finite dimensional C-comodule.

Proof. For the first claim, we see that the condition C ∈ fd(C) translates across
Koszul duality to k ∈ Perf (A), which is the definition of regularity. For the
second claim, the condition C ∈ fd(Ce) translates across bimodule Koszul duality
to A ∈ Perf (Ae). For the third claim, clearly (a) implies (b). If (b) holds, choose
a finite dimensional comodule M with a quasi-isomorphism C ≃ M . Since A was
complete local, M is an object of ColocDco(C)(C), and hence the quasi-isomorphism
C ≃M was actually a weak equivalence, so (a) holds. □

Remark 5.26. If C is a coconnective coalgebra such that C ∈ pvd(k), then C
is quasi-isomorphic to a finite dimensional C-comodule: indeed the algebra C∗ is
connective and proper, and hence quasi-isomorphic to a finite dimensional algebra
(by 5.1), and in particular a module over itself.
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5.4. Smoothness for coalgebras.

Definition 5.27. Let C be a coalgebra. Say that C is smooth if C ∈ thickDco(Ce)(C
e).

Say that C is regular if k ∈ thickDco(C)(C).

Proposition 5.28. Let (C,A) be a Koszul duality pair. Then C is smooth if and
only if A is strongly proper local. C is regular if and only if A is proper local. If C
is smooth then it is regular.

Proof. The first two claims are a simple translation across Koszul duality. The third
claim is clear: if C is weakly equivalent as a bicomodule to a finite dimensional
bicomodule, then C is certainly weakly equivalent as a right comodule to a finite
dimensional right comodule. □

Theorem 5.29. Let (C,A) be a Koszul duality pair, with A a connective local
algebra. Then A is proper if and only if C is smooth.

Proof. If C is smooth then A is certainly proper. Conversely, if A is proper then it
is strongly proper local by 5.6, and hence C is smooth by 5.28. □

Lemma 5.30. Let C be a coalgebra. Then:
(1) If C is strongly proper then hqf co(C) ⊆ fd(C).
(2) If hqf co(C) ⊆ fd(C) then C is proper.
(3) If ΩC is local then hqf co(C) ⊆ fd(C) if and only if C is proper.
(4) If C is smooth and ΩC is local and connective then C is strongly proper if

and only if hqf co(C) ⊆ fd(C).

Proof. Claim (1) is the dual of 5.13(1), and claim (2) is the dual of 5.16(2). Claim
(3) is the dual of 5.16(1). For claim (4), suppose that hqf co(C) ⊆ fd(C). Putting
A := ΩC we see that A is connective and proper and hence quasi-isomorphic to
a finite dimensional algebra. By 5.13(2), A is smooth, and the claim follows by
5.29. □

5.5. Derived completions. If A is an augmented algebra, we write A! := (BA)∗,
which is a pseudocompact algebra. Forgetting the pseudocompact topology, we
may iterate this construction and consider the pseudocompact algebra A!!, which
we call the derived completion of A, following [Efi10]. There is a natural map
A→ A!! which in general is not a quasi-isomorphism; for example for A = k[t] it is
the (t)-completion kJtK. However, we may ask when A!! inherits properties of A; in
this section we show that it inherits smoothness (as a pseudocompact algebra) and
properness; we also give converse theorems.

Proposition 5.31. Let A be an augmented algebra.
(1) If A is smooth then so is BA!.
(2) If BA! is smooth and Ae is complete local then A is smooth.

Proof. Put C := BA, so that A! = C∗. If A is smooth then C is strongly proper
and so C ∈ fd(Ce) ≃ thickDco(Ce)(k). Linearly dualising this, and using that
(Ce)∗ ≃ (Ce)∗ since C ∈ pvd(k), we see that C∗ is strongly proper. Hence
BC∗ = BA! is smooth, proving (1). On the other hand, if BA! is smooth then C∗ ∈
thickD(C∗e)(k) ≃ thickD(Ce∗)(k). Bimodule Koszul duality yields an equivalence
ColocDco(Ce)(C

e) ≃ ColocD(Ae)(k), and hence if Ae is complete local then k ∈
ColocDco(Ce)(C

e). In particular, the linear dual gives a contravariant equivalence
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thickD(Ce∗)(k) ≃ thickDco(Ce)(k). It now follows that C ∈ thickDco(Ce)(k) and
hence A is smooth. □

Remark 5.32. One only expects Ae to be complete local when A is proper local; for
example the enveloping algebra of kJtK is not complete local. Instead, the correct
object to work with is the completed enveloping algebra, which is the linear dual of
the coalgebra kJtK∗e.

Proposition 5.33. Let A be a local algebra.
(1) If A is proper then so is A!!.
(2) If A!! is local and quasi-isomorphic to a finite dimensional algebra then A

is proper.

Before we begin the proof, we isolate a useful lemma.

Lemma 5.34. If C is a coalgebra, then linear duality gives a quasi-equivalence

thickDco(C)(C) ≃ Perf (C∗)◦.

Proof. We have REndDco(C)(C) ≃ C∗ since C is an injective C-comodule. Hence
we obtain an abstract quasi-equivalence thickDco(C)(C) ≃ Perf (C∗)◦ of pretri-
angulated dg categories that sends C to C∗. Since the linear dual is a triangle
functor, and agrees with this quasi-equivalence on the generator C, it must be a
quasi-equivalence. □

Proof of 5.33. Put C = BA. Observe that:

A is proper ⇐⇒ C is regular
⇐⇒ k ∈ thickDco(C)(C)

⇐⇒ k ∈ Perf (C∗) (by 5.34)

⇐⇒ A! is regular

⇐⇒ BA! is proper.

Now it is clear that (1) holds, since if BA! is proper then its linear dual A!! is
certainly proper. For (2), if A!! has a finite dimensional model then since A!! is
local we see that A!! ∈ thickD(A!!)(k). Linearly dualising, we see that BA! is
proper and hence A is proper. □

Remark 5.35. If A is a dg category, there is a natural ‘evaluation’ map evA : A →
pvdpvdA. Following [KS22, Goo24] say that A is Morita reflexive if evA is a
Morita equivalence. The terminology comes from the fact that

pvdA ≃ RHomHqe(A,Perf k) ≃ RHomHmo(A, k)
is the dual of A in the Morita homotopy category. If A is a local algebra, then
by 5.34 there is a Morita equivalence pvd(A) ≃ (A!)◦. In particular, if A! is also
local then the natural map evA agrees up to Morita equivalence with the derived
completion map c : A→ A!!, and so A is Morita reflexive if and only if c is a quasi-
isomorphism. A large class of derived complete in this sense algebras is identified
in [Boo22]. We also remark that there is a Koszul dual notion of Morita reflexivity
for coalgebras, defined in terms of the natural map fdC → pvdhqf coC. The first
author will further explore the connections between Morita reflexivity and Koszul
duality in upcoming work joint with Isambard Goodbody and Sebastian Opper.
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6. Calabi–Yau conditions

We give definitions of what it means for an algebra to be (twisted, nonsmooth)
Calabi-Yau. We show that a twisted nonsmooth CY algebra admits a twisted CY
structure on certain subcategories of its derived category.

6.1. The dualising complex. Let A be an algebra and M an A-bimodule. Write
HH•(A,M) := RHomAe(A,M) for the Hochschild cohomology complex and HH•(A,M) :=
M⊗L

AeA for the Hochschild homology complex. When M = A we will usually drop
it from the notation; beware that A 7→ HH•(A) is not a functor. However, the
assignment A 7→ HH•(A,A∗) is a contravariant functor from algebras to vector
spaces; in the older literature this functor is also known as the Hochschild cohomol-
ogy of A. Both HH•(A,M) and HH•(A,M) are vector spaces; if M is not just an
A-bimodule, but an R-Ae-bimodule for some algebra R, then they are R-modules.
In particular when A is commutative then M is a (symmetric) Ae-bimodule, and
hence both HH•(A,M) and HH•(A,M) are A-bimodules.

Definition 6.1. Let A be an algebra. The inverse dualising complex of A is
the A-bimodule A∨ := RHomAe(A,Ae) ≃ HH•(A,Ae).

If M is a perfect bimodule and N is any bimodule, then there is a natural quasi-
isomorphism RHomAe(M,N) := N ⊗L

Ae M∨; to see this write M as an iterated
cone between copies of Ae. In particular if A is homologically smooth, then we get
natural quasi-isomorphisms of vector spaces

HH•(A,M) ≃M ⊗L
Ae A∨

HH•(A,M) ≃M ⊗L
Ae A∨∨ ≃ RHomAe(A∨,M)

where in the second line we use that P∨∨ ≃ P for a perfect A-bimodule P . When A
is commutative and M is a symmetric bimodule then these are quasi-isomorphisms
of A-bimodules.

Remark 6.2. Suppose that A is a homologically smooth commutative algebra. Sub-
stituting M = A into the first quasi-isomorphism above gives a quasi-isomorphism
HH•(A) ≃ HH•(A,A

∨). Since A is commutative, both sides are A-bimodules, and
this quasi-isomorphism is A-bilinear. So dualising we obtain an A-bilinear quasi-
isomorphism HH•(A)∨ ≃ HH•(A,A

∨)∨. Using the hom-tensor adjunction, the right
hand side simplifies to HH•(A), and we obtain an A-bilinear quasi-isomorphism
HH•(A)∨ ≃ HH•(A). In other words, the bimodule HH•(A) is self-dual.

6.2. Calabi–Yau algebras.

Definition 6.3. Let A be an algebra. Say that A is twisted nonsmooth Calabi–
Yau if A∨ is an invertible A-bimodule. Say that A is nonsmooth n-Calabi–Yau
if there is an A-bilinear quasi-isomorphism A ≃ A∨[n]. Say that A is (twisted)
Ginzburg Calabi–Yau if it is both smooth and (twisted) nonsmooth Calabi–Yau.

Note that a nonsmooth n-Calabi–Yau algebra is twisted nonsmooth Calabi–Yau,
since A[−n] is invertible.

Remark 6.4. This definition is a noncommutative-geometric abstraction of the no-
tion of ‘trivial canonical bundle’ in algebraic geometry; indeed a Calabi–Yau variety
is precisely a smooth variety with trivial canonical bundle.
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Since nonsmooth Calabi–Yau algebras are our main focus, we will frequently
abbreviate “nonsmooth Calabi–Yau” as simply CY, with the understanding that
Ginzburg CY refers to Calabi–Yau algebras in the usual sense. We will also often
suppress the integer n from the notation.

Remark 6.5. The original definition of Ginzburg CY in [Gin06] requires in addi-
tion that the isomorphism f : A → A∨[n] in the derived category of A-bimodules

satisfies the extra condition that the composition A → A∨∨ f∨[n]−−−→ A∨[n] is equal
to f . However, it is a theorem of Van den Bergh that in the smooth setting, this
extra condition is superfluous [VdB15, C.1]. In the nonsmooth setting, this extra
condition does not seem useful.

Remark 6.6. If A is a smooth algebra, then an A-bilinear quasi-isomorphism A ≃
A∨[n] is equivalent to the data of a nondegenerate degree n class η in the Hochschild
complex HH•(A). When η lifts to a class in negative cyclic homology, one says
that A is a left Calabi–Yau or exact Calabi–Yau algebra. In [HR24], exact
CY algebras are referred to as smooth Calabi–Yau algebras, with Ginzburg CY
algebras referred to as weak smooth Calabi–Yau algebras. There is a dual ver-
sion for proper algebras known as right Calabi–Yau. When A is neither smooth
nor proper, there seems to be no interpretation of a nonsmooth CY structure in
terms of a Hochschild class, and hence no notion of ‘exact nonsmooth CY’ algebras.

Remark 6.7. Suppose that A is a smooth algebra with a right A-linear quasi-
isomorphism A ≃ A∨[n]. Then A is twisted Ginzburg Calabi–Yau: since A is
smooth, the natural map A→ REndA(A∨) ≃ A∨∨ is a quasi-isomorphism, and an
application of 4.8 shows that there exists a homotopy automorphism ν of A and a
two-sided quasi-isomorphism A ≃ νA

∨[n].

Remark 6.8. One can also make sense of a fractional version of the above definition:
say that A is fractional CY if there exists some m > 0 such that (A∨)⊗

L
Am ≃ A.

Fractional CY algebras abound in the literature; for a selection of examples see
[HI11, FK18, Kuz19, Rog21, Gra23].

Lemma 6.9. Let A be a proper twisted CY algebra and let B be a proper twisted
CY algebra. Then the tensor product A⊗B is a proper twisted CY algebra.

Proof. Since both A and B are proper, a standard computation with the bar com-
plex shows that we have HH•(A,M)⊗HH•(B,N) ≃ HH•(A⊗B,M⊗N) whenever
M is a proper A-bimodule and N is a proper B-bimodule. In particular, we have
(A⊗B)∨ ≃ A∨ ⊗B∨ and the result follows. □

In particular, the proof shows that if A is a proper n-CY algebra and B is a
proper m-CY algebra then A⊗B is a proper (n+m)-CY algebra.

6.3. Calabi–Yau conditions on categories.

Definition 6.10. Let A be an augmented algebra and L,M two triangulated
subcategories of D(A). We say that the pair (L,M) has a twisted Calabi–Yau
structure if there is an invertible bimodule X such that for all L ∈ L and all
M ∈M, there are natural quasi-isomorphisms

RHomA(M,LX)∗ ≃ RHomA(L,M).

When X = A[n] we call this an n-Calabi–Yau structure. When L = M we
simply say that L has a twisted Calabi–Yau structure.
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Observe that in the above definition, the functor S(L) := LX is a relative Serre
functor, and indeed this condition is equivalent to the existence of a twisted CY
structure.

If A is Ginzburg n-CY then the pair (D(A),pvd(A)) has a n-CY structure
[Kel11, 3.4]. If A is smooth, proper, and finitely presented, then [n] is a Serre
functor on pvd(A) if and only if A is Ginzburg nCY [Gin06, 3.2.4].

The following lemma will allow us to produce CY structures on the derived
categories of CY algebras.

Lemma 6.11. Let A be an algebra. Let L ∈ D(A) and let M ∈ pvd(A). There
are natural maps

L⊗L
A A

∨ ⊗L
A M

∗ → RHomA(M,L)

RHomA(M,L)∗ → RHomA(L⊗L
A A

∨,M)

which are quasi-isomorphisms if P := RHomk(M,L) is a perfect A-bimodule.

Proof. We follow the proof of [Kel11, 4.1]. There are natural maps

L⊗L
A A

∨ ⊗L
A M

∗ ≃ P ⊗L
Ae A∨ θ−→ RHomAe(A,P ) ≃ RHomA(M,L)

and the first map of interest is their composition. Taking its linear dual, we obtain
a natural map

RHomA(M,L)∗ → (L⊗L
A A

∨ ⊗L
A M

∗)∗ ≃ RHomA(L⊗L
A A

∨,M)

which is our second desired map. Observe that the two natural maps are quasi-
isomorphisms if and only if θ is. To prove that θ is a quasi-isomorphism if P is
perfect, it suffices to prove it for P = Ae, which is clear. □

Corollary 6.12. Let A be an algebra, let L ∈ PerfA and let M ∈ pvd(A).
Suppose that either:

(1) A is smooth
(2) A is augmented, A◦ is regular, and M ∈ thickD(A)(k).

Then there is a natural quasi-isomorphism

RHomA(M,L)∗ → RHomA(L⊗L
A A

∨,M).

Proof. By 6.11 it suffices to show that RHomk(M,L) ≃ M∗ ⊗ L is a perfect
A-bimodule. Since L is perfect by assumption, it suffices to show that M∗ ∈
Perf (A◦). If (1) holds then A◦ is smooth and hence M∗ ∈ pvd(A◦) ⊆ Perf (A◦).
If (2) holds then M∗ ∈ thickD(A◦)(k) ⊆ Perf (A◦). □

The following result (or at least its untwisted version) is well known and appears
in e.g. [Gin06, Kel11].

Theorem 6.13. Let A be a twisted Ginzburg CY algebra. Then the pair (PerfA,pvdA)
has a twisted CY structure.

Proof. Let L ∈ Perf (A) and M ∈ pvd(A). Let X be the inverse of the invertible
bimodule A∨. Then by 6.12(1) along with the twisted CY property, we have natural
quasi-isomorphisms

RHomA(M,LX)∗ ≃ RHomA(LX ⊗L
A A

∨,M)

≃ RHomA(L,M)

as required. □
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One can prove a very similar result when A is not smooth, but only regular:

Theorem 6.14. Let A be an augmented twisted CY algebra such that A◦ is regular.
Then the pair (PerfA, thick(k)) has a twisted CY structure.

Proof. Identical to the proof of 6.13 except that one uses 6.12(2). □

7. Gorenstein and Frobenius algebras

7.1. Gorenstein morphisms. Let g : A→ l be a map of algebras. Note that the
one-sided dual RHomA(l, A) of l is naturally an A-l-bimodule, and in particular an
A-bimodule. Say that g is one-sided d-Gorenstein if there is a quasi-isomorphism
l ≃ RHomA(l, A)[d] of left A-modules. Say that g is two-sided d-Gorenstein if
there is a quasi-isomorphism l ≃ RHomA(l, A)[d] of A-bimodules. We will often
drop the integer d from the notation.

We say that an augmented algebra A is d-Gorenstein if the augmentation
morphism A → k is two-sided d-Gorenstein. This definition is originally due to
Avramov and Foxby [AF92]; a spectral version was also given in [DGI06]. Frankild
and Jørgensen [FJ03] gave a ‘global’ version of this definition where k is replaced
with pvd(A).

This condition is equivalent to the a priori weaker condition of A → k being
one-sided Gorenstein:

Proposition 7.1. Let g : A→ l be a map of algebras.
(1) g is two-sided d-Gorenstein if and only if there is a quasi-isomorphism

l ≃ RHomA(l, A)[d] of A-l-bimodules.
(2) If l = k (i.e. g is an augmentation) then g is one-sided d-Gorenstein if and

only if it is two-sided d-Gorenstein.
(3) If A is commutative and l is a symmetric bimodule, then g is one-sided

d-Gorenstein if and only if it is two-sided d-Gorenstein.

Proof. For brevity put X := RHomA(l, A). To prove (1), consider the restriction
functor g∗ from the derived category of A-l-bimodules to the derived category of
A-bimodules. A quasi-isomorphism l ≃ X[d] of A-l-bimodules hence yields a quasi-
isomorphism g∗l ≃ g∗X[d] of A-bimodules. But since the right action of A on both
X and l factors through the right action of l, we see that g∗l ≃ l and g∗X ≃ X, and
the claim follows. Claim (2) follows from (1) with l = k. For claim (3), observe that
both X and l are symmetric A-bimodules, and hence they are quasi-isomorphic as
bimodules if and only if they are quasi-isomorphic as left modules. □

Remark 7.2. In the presence of some connectivity conditions, one can check the
Gorenstein property on cohomology. Let A be an augmented algebra and put
H := H∗(A), which is a graded algebra with no differential. As usual if M,N are
two graded H-modules then we let Extp,qH (M,N) denote the qth graded piece of
ExtpH(M,N). There is a spectral sequence with E2 page

Extp,qH (k,H) =⇒ Extp+q
A (k,A)

which converges if A is connective enough. If H is Gorenstein, then this spectral
sequence collapses at the E2 page to show that A is Gorenstein.

Under some regularity assumptions, Calabi–Yau algebras are Gorenstein:
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Proposition 7.3. Let A be an augmented n-CY algebra such that A◦ is regular.
Then A is n-Gorenstein.

Proof. The CY structure on (PerfA, thick(k)) from 6.14 yields a natural, and
hence A-bilinear, quasi-isomorphism RHomA(k,A[n])

∗ ≃ k. Taking the linear dual,
we get an A-bilinear quasi-isomorphism RHomA(k,A)[n] ≃ k, as desired. □

Remark 7.4. Let A be a regular d-Gorenstein algebra and S ⊆ H(A) a homoge-
neous susbset. Let A → LSA be the derived localisation in the sense of [BCL18]
and assume that the augmentation module k of A is S-local. Then LSA is also
Gorenstein: indeed, we have natural quasi-isomorphisms

RHomLSA(k, LSA) ≃ RHomA(k, LSA) since k is S-local

≃ RHomA(k,A)⊗L
A LSA since A is regular

≃ k[−d]⊗L
A LSA since A is Gorenstein

and since the localisation is smashing, k[−d] ⊗L
A LSA is the localisation of the

A-module k[−d], which by hypothesis is k[−d]. Hence LSA is d-Gorenstein.

7.2. Discrete Gorenstein algebras. In this part all algebras will be discrete. Say
that a noncommutative ring is Iwanaga–Gorenstein if it is two-sided noetherian,
and has finite injective dimension over itself, as both a left and right module. This
is the usual definition of ‘Gorenstein’ in the noncommutative algebra literature, but
generalises less well to the dg setting. The following proposition is standard:

Proposition 7.5 ([Mat89, 18.1]). Let A be a commutative noetherian local ring of
finite Krull dimension with residue field l. The following are equivalent:

(1) A is Iwanaga–Gorenstein.
(2) A→ l is Gorenstein.
(3) A→ l is dim(A)-Gorenstein.
(4) ExtiA(l, A) vanishes for i≫ 0.

Suppose that A is a commutative noetherian ring. If A is Iwanaga–Gorenstein,
then so are all of its localisations at prime ideals, since injective resolutions localise.
The converse is true if A has finite Krull dimension [Bas63]. In particular we have:

Proposition 7.6. Let A be a commutative Iwanaga-Gorenstein ring. Every sur-
jection A→ l to a field is Gorenstein.

Proof. Let m be the kernel of A→ l. It is easy to see that RHomA(l, A) is supported
at m, where we have RHomA(l, A)m[d] ≃ l since Am is (Iwanaga)–Gorenstein. □

Local complete intersection rings are Iwanaga–Gorenstein, and in particular any
hypersurface ring of the form k[x1, . . . , xn]/f is Iwanaga–Gorenstein. In particular,
polynomial algebras k[x1, . . . , xn], complete local polynomial algebras kJx1, . . . , xnK,
and truncated polynomial algebras k[y]/yn are all Gorenstein when equipped with
the standard augmentation.

Recall that a commutative k-algebra A is essentially of finite type if it is a
localisation of a finitely generated k-algebra. For example, the coordinate ring of a
quasiprojective variety is essentially of finite type.
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Proposition 7.7 ([AI08, Theorem 2]). Let A be a commutative k-algebra, essen-
tially of finite type. Then A is Iwanaga–Gorenstein if and only if the A-module⊕

n

ExtnAe(A,Ae)

is invertible.

Corollary 7.8. Let A be a commutative k-algebra, essentially of finite type.
(1) If A is CY then it is Iwanaga–Gorenstein.
(2) If A is irreducible and Iwanaga–Gorenstein then it is twisted CY.
(3) If A is irreducible and local with residue field l, then A is CY if and only if

A→ l is Gorenstein.

Proof. For brevity let E denote the module ⊕n Ext
n
Ae(A,Ae). For (1), if A is CY

then there is an isomorphism E ∼= A, which is certainly an invertible module.
For (2), since A is irreducible, the regular module is indecomposable, and hence
invertible modules are indecomposable. In particular if E is invertible, there is a
unique integer t such that ExttAe(A,Ae) ∼= E and ExtiAe(A,Ae) vanishes for i ̸= t. It
follows that there is a quasi-isomorphism A∨[t] ≃ E of A-bimodules, and hence A∨

is twisted CY. For (3), simply follow the proof of (2) and observe that an invertible
module over a local ring is free of rank 1. □

In particular, a Gorenstein commutative algebra essentially of finite type is ‘lo-
cally nonsmooth CY’.

Example 7.9. Let R be a commutative noetherian k-algebra of finite Krull dimen-
sion d. Recall from [IR08, IW14] that R is said to be singular CY if it is Gorenstein
and equicodimensional [IR08, 3.10]. An algebra essentially of finite type is noether-
ian and of finite Krull dimension, and an irreducible algebra is equicodimensional.
Hence, if R is irreducible and essentially of finite type, then it is singular CY if and
only if it is Gorenstein, and 7.8 provides implications

R nonsmooth CY =⇒ R singular CY =⇒ R twisted CY.

7.3. Frobenius algebras. Recall that a discrete finite dimensional graded algebra
A is d-Frobenius if there is an isomorphism A∗ ∼= A[d] of A-modules (equivalently,
A◦-modules). Such an algebra is equipped with a Nakayama automorphism ν, and
one has an A-bimodule isomorphism A∗ ∼= Aν [d], where Aν denotes A with the usual
bimodule structure on the left, and twisted by ν on the right. One then obtains a
quasi-isomorphism HH•(A,Aν)

∗ ≃ HH•(A)[d]. A symmetric Frobenius algebra is
one whose Nakayama automorphism is the identity, so if A is symmetric one has
the simpler description HH•(A)

∗ ≃ HH•(A)[d]. For a comprehensive reference on
the classical theory of Frobenius algebras, see [Lam99, §16].

We can generalise these definitions straightforwardly to the dg world. Let A be
an algebra. Say that A is derived d-Frobenius (or just Frobenius for short)
if there is a quasi-isomorphism A∗ ≃ A[d] of A◦-modules. This is also known as
being a (derived) Poincaré duality algebra, as in e.g. [DGI06]. Say that A
is twisted symmetric if A∗ is an invertible A-bimodule. Say that A is derived
d-symmetric (or just symmetric for short) if A∗ ≃ A[d] as A-bimodules.

Remark 7.10. This definition is a generalisation of Brav and Dyckerhoff’s notion of
right Calabi–Yau [BD19]. Indeed, if A is a proper algebra, then homotopy classes
of A-bilinear morphisms A→ A∗ are parameterised by HH•(A)

∗. In particular, if
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A is a symmetric algebra then we obtain a class ω ∈ HH•(A)
∗, and in addition A

is said to be right Calabi–Yau if ω lifts to a class in cyclic homology HC•(A)
∗.

In [HR24], a symmetric algebra is called a weak proper Calabi–Yau algebra.

Remark 7.11. Unlike in the discrete case, a twisted symmetric algebra need not be
Frobenius: if A and B are two finite dimensional twisted symmetric algebras, of
different degrees, then the product A×B is twisted symmetric but not Frobenius.

If A is a derived d-Frobenius algebra, then A ≃ A∗∗ as vector spaces. This holds
if and only A ∈ ref (A). However, Frobenius algebras need not be proper, as the
following examples show.

Example 7.12.
(1) The shifted dual numbers k[x]/x2 with x placed in degree n is derived

n-Frobenius.
(2) If V is the vector space k ⊕ k[1], then the square-zero extension k ⊕ V is

not Frobenius, for dimension reasons.
(3) The graded field K := k[x, x−1] with x placed in nonzero degree n is derived

m-Frobenius whenever m is an integer multiple of n. Note that K does not
admit an augmentation as a graded algebra.

(4) Let V be the graded vector space with V i = k for all i. Then the square
zero extension k ⊕ V is derived 0-Frobenius.

Example 7.13 (Symmetric completions). Recall that if A is an algebra and M a
bimodule, one can form the trivial extension algebra A⊕M with multiplication
given by (a,m)(a′,m′) = (aa′, am′+ma′). In particular, let A be a proper algebra.
The d-symmetric completion of A is the trivial extension algebra Td(A) :=
A⊕A∗[−d]. One then has

Td(A)
∗ ∼= A∗ ⊕A[d] ≃ Td(A)[d]

showing that Td(A) is d-symmetric.

Remark 7.14. Let A be a d-Frobenius algebra. Then its cohomology algebra B :=
H∗(A) is also d-Frobenius. If A was augmented and local, then B is local, and
its augmentation ideal m is nilpotent: since B is local, B0 is an Artinian local
k-algebra, and in particular m0 is nilpotent. If x ∈ m is a non-nilpotent of nonzero
degree n, then let y ∈ m be the corresponding element of degree d − n across the
isomorphism B ∼= B∗[d]. Then yx = 1 ∈ m, which is a contradiction.

Remark 7.15. Classically, one may also define Frobenius algebras in terms of a
nondegenerate pairing. This has an analogue for derived Frobenius algebras: if A
is an algebra, say that a Frobenius pairing on A is a bilinear map σ : A⊗kA→ k
such that

(1) σ is homotopy nondegenerate: H∗σ is nondegenerate.
(2) σ(ab, c) = σ(a, bc).

Then an algebra A is Frobenius if and only if it admits a Frobenius pairing: a left
A-linear quasi-isomorphism ϕ : A→ A∗ corresponds to a Frobenius pairing via the
formula σ(a, b) = ϕ(b)(a).

Proposition 7.16. If A is a derived d-Frobenius algebra, then it is twisted sym-
metric: there exists a homotopy automorphism ν of A such that A∗ ≃ Aν [d] as
A-bimodules.
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Proof. One can use the hom-tensor adjunction along with the fact that A ≃ A∗∗

to show that REndA(A∗[−d]) ≃ A. So applying 4.8 to the left A-module quasi-
isomorphism A ≃ A∗[−d], one obtains the desired homotopy automorphism. □

We call any such ν a Nakayama automorphism of A. Note that A is a
symmetric algebra if and only if id is a Nakayama automorphism.

Augmented Frobenius algebras are Gorenstein:

Proposition 7.17 (cf. [DGI06, 7.2]). Let A be a d-Frobenius algebra and g : A→ k
an augmentation. Then g is Gorenstein.

Proof. The natural quasi-isomorphism A→ REndA(A∗[−d]) is a morphism of aug-
mented algebras, so by 4.9 we may choose the Nakayama automorphism ν of A
to be a homotopy automorphism of A in the category of augmented algebras. In
particular, it follows that kν ≃ k as A-bimodules. We hence have natural quasi-
isomorphisms of A-bimodules

k ≃ RHomA(k,A
∗) by hom-tensor

≃ RHomA(k,Aν [d]) by 7.16
≃ RHomA(kν−1 , A)[d]

≃ RHomA(k,A)[d] since ν fixes k

as required. □

Remark 7.18. One can define an algebra to be fractional Frobenius if there exists
some m > 0 such that (A∗)⊗

L
Am ≃ A[n]. In view of 7.30 below, one can prove that

a proper algebra is fractional Frobenius if and only if it is fractional twisted CY, as
in 6.8. In particular, the references given there provide many examples of fractional
Frobenius algebras.

Remark 7.19. IfA is any algebra, the hom-tensor adjunction yields a quasi-isomorphism
HH•(A)

∗ ≃ HH•(A,A∗), and in particular if A is d-symmetric then we have a quasi-
isomorphism HH•(A)

∗ ≃ HH•(A)[d].

7.4. Proper Frobenius algebras. In this section we study proper Frobenius and
twisted symmetric algebras in detail. The latter admit multiple characterisations:

Lemma 7.20. Let A be a proper algebra. The following are equivalent:
(1) A is twisted symmetric.
(2) The right module A∗ is a thick generator of PerfA.
(3) The functor −⊗L

A A
∗ is an autoequivalence of PerfA.

(4) The functor −⊗L
A A

∗ is a Serre functor on PerfA.
(5) PerfA admits a Serre functor.

Proof. Noting that A is twisted symmetric if and only if A∗ is invertible, the
equivalence of (1), (2) and (3) follows from 4.1 together with the easy observa-
tion that REndA(A∗) ≃ A. Observe that if P ∈ PerfA then we have P ⊗L

A A
∗ ≃

RHomA(P
∨, A∗) ≃ P∨∗ by hom-tensor. So for all P ∈ PerfA and M ∈ D(A) we

have RHomA(M,P ⊗L
A A

∗) ≃ RHomA(P,M)∗ by hom-tensor again. In particular,
− ⊗L

A A∗ is a Serre functor on PerfA if and only if it is an autoequivalence of
PerfA, which shows that (3) and (4) are equivalent. Clearly (4) implies (5), and
the converse is [Goo23, 5.5]. □
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Remark 7.21. If A is a finite dimensional discrete algebra then A∗ is an invertible
bimodule in the classical sense (i.e. invertible with respect to the underived tensor
product ⊗A) if and only if A is self-injective.

Example 7.22. Let A be a proper algebra such that PerfA admits a Serre functor
S. Then A is a Frobenius algebra if and only if it is a Calabi–Yau object; i.e.
SA ≃ A[d].

Example 7.23. Let A be a smooth proper algebra. Then it is well known that
−⊗L

AA
∗ is a Serre functor on PerfA [Shk07]. In particular, A is twisted symmetric.

Example 7.24 (Algebraic geometry). LetX be a proper irreducible k-scheme. Grothendieck
duality yields natural quasi-isomorphisms

RHomX(F ,G ⊗L
X ω•

X) ≃ RHomX(G,F)∗

whenever F ∈ D(X) is coherent and G ∈ PerfX is perfect, where ω•
X denotes

the dualising complex. In particular PerfX admits a Serre functor. Note that
X is Cohen–Macaulay precisely when ω•

X is a shift of a sheaf, and is Gorenstein
precisely when it is a shifted line bundle, in which case we have ω•

X = ωX [dimX].
By [BvdB03], D(X) has a compact generator, and in particular there exists some
proper algebra A with PerfA ≃ PerfX. By 7.20, we see that A is twisted sym-
metric. It is symmetric precisely when the Serre functor is a shift, i.e. X has triv-
ial canonical bundle (this is the geometric meaning of ‘nonsmooth Calabi–Yau’).
In this setting, one may use 7.19 to determine HH∗(X) = HH∗(A) in terms of
HH∗(X) = HH∗(A), which may be computed via the HKR theorem when applica-
ble.

The product of two proper twisted symmetric algebras is proper twisted sym-
metric:

Lemma 7.25. Let A and B be proper twisted symmetric algebras. Then A⊗B is
a proper twisted symmetric algebra.

Proof. Putting P := A⊗B for brevity, we have P ∗ ≃ A∗⊗B∗ as P -bimodules, where
the first quasi-isomorphism uses that A is proper. Since the tensor product of an
invertible A-bimodule with an invertible B-bimodule is an invertible P -bimodule,
we are done. □

Remark 7.26. It is not the case that a tensor product of non-proper Frobenius
algebras is Frobenius. For example, take A = k[x, x−1] with |x| = 1. Then A ⊗ A
is not reflexive and so cannot be Frobenius.

Proposition 7.27. Let A be a proper algebra. Then the following are equivalent:
• A is twisted symmetric.
• PerfA admits a twisted Calabi–Yau structure.

Moreover, A is d-symmetric if and only if PerfA admits a d-Calabi–Yau structure.

Proof. If (1) holds then − ⊗L
A A

∗ is a Serre functor on PerfA by 7.20, and hence
(2) holds. Conversely, if (2) holds then, the naturality of the CY structure iso-
morphisms implies that we have an invertible A-bimodule X and an A-bimodule
quasi-isomorphism

A∗ ≃ REndA(A,A)∗ ≃ REndA(A,X) ≃ X
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and so (1) holds. Note that this direction did not use the properness hypothesis on
A. The final statement follows by taking X = A[d]. □

Combining 7.27 with 7.16, we obtain:

Corollary 7.28. Let A be a proper derived d-Frobenius algebra, with Nakyama
automorphism ν. Then PerfA admits a twisted Calabi–Yau structure, with twisting
bimodule Aν .

We next show that a proper algebra is twisted symmetric if and only if it is
twisted CY. The following lemma is key:

Lemma 7.29. Let A be a proper algebra. Then there is an A-bilinear quasi-
isomorphism A∨ ≃ RHomA(A

∗, A).

Proof. Since RHomk(A
∗, A) ≃ A ⊗ A is a perfect A-bimodule, applying 6.11 with

M = A∗ and L = A (and using M∗ ≃ A) gives the required A-bilinear quasi-
isomorphism A∨ → RHomA(A

∗, A). □

Proposition 7.30. Let A be a proper algebra. Then A is twisted symmetric if and
only if it is twisted Calabi–Yau.

Proof. If A is twisted symmetric then A∗ is an invertible bimodule. Moreover,
RHomA(A

∗, A) is its inverse, and hence itself invertible. Then 7.29 shows that A∨

is invertible, and hence A is twisted CY. The converse implication is similar. □

Corollary 7.31. Let A be a proper algebra. Then A is symmetric if and only if it
is Calabi–Yau.

Example 7.32. Suppose that X is a smooth projective variety over k. Let A be a
smooth proper algebra derived equivalent to X, in the sense that there is an equiv-
alence Db(cohX) ≃ PerfA (the existence of such an A is assured by [BvdB03]).
Then X is Calabi–Yau if and only if A is: to see this, observe that 7.24 shows that
X is CY if and only if A is symmetric, and the claim now follows from 7.31.

For a proper augmented algebra, the Gorenstein and Frobenius conditions are
closely related. Indeed in [Jin18], a proper algebra satisfying any of the equivalent
conditions of 7.20 is called Gorenstein; we refrain from using this terminology.
We have already shown that a proper Frobenius algebra is Gorenstein, and a result
of Goodbody gives a partial converse:

Proposition 7.33. Let A be a finite dimensional local algebra. If both A and A◦

are Gorenstein, then A is Frobenius.

Proof. Follows from [Goo23, 5.8]. □

8. Calabi–Yau, Gorenstein, and Frobenius coalgebras

We define the above notions for coalgebras, analogously to the definitions for
algebras, and prove our main theorem. We also study how Frobenius coalgebras
behave across linear duality and finish with some discussion of endomorphism al-
gebras.
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8.1. The main theorem. Let C be a coalgebra and M a right C-comodule. Re-
call that the left C-comodule M∗ is the ‘linear dual’ of M , which is Homk(M,k)
when M is finite dimensional and in general is extended via homotopy (co)limits
in Comod-C. Recall also that when M is a C-bicomodule we write D(M) for its
‘linear dual’, which is Homk(M,k) when M is finite dimensional and in general is
extended via homotopy (co)limits, this time in C-Comod-C. We also use the same
notation for bicontramodules across the co-contra correspondence.

If C is a coalgebra we denote by C∨ the C-bicontramodule RHomCe

(C∗, (Ce)∗).

Definition 8.1. Let C be a coalgebra.
(1) Say that C is twisted Calabi–Yau if there is an invertible bicomodule X

such that C∗ ≃ X(C∨). Say that C is d-Calabi–Yau if there is a weak
equivalence C∗ ≃ C∨[d] of bicontramodules.

(2) Say that C is d-Gorenstein if there is a weak equivalence RHomC(k,C∗)[d] ≃
k of left C-contramodules.

(3) Say that C is d-Frobenius if there is a weak equivalence C∗[d] ≃ C of left
C-comodules.

(4) Say that C is twisted symmetric if D(C) is an invertible bicomodule.
Say that C is d-symmetric if there is a weak eqivalence D(C)[d] ≃ C.

Remark 8.2. The definitions of Frobenius and (twisted) symmetric use comodules
as these are best adapted to ‘k-linear duality’ in the coalgebraic setting. On the
other hand, the definitions of Gorenstein and (twisted) CY use contramodules as
these are best adapted to ‘C-linear duality’. Using the co-contra correspondence,
it is possible to state all of the above definitions entirely in terms of comodules or
contramodules.

If A is a pseudocompact algebra, then we use the same terminology for A, with
the understanding that it applies to the coalgebra A∗.

Theorem 8.3. Let (C,A) be a Koszul duality pair.
(1) A is twisted Calabi–Yau if and only if C is twisted symmetric.
(2) A is d-Calabi–Yau if and only if C is d-symmetric.
(3) A is d-Gorenstein if and only if C is d-Frobenius.
(4) A is d-Frobenius if and only if C is d-Gorenstein.
(5) A is twisted symmetric if and only if C is twisted Calabi–Yau.
(6) A is d-symmetric if and only if C is d-Calabi–Yau.

Proof. For all statements, the proof consists of matching up appropriate modules,
co/contramodules, and functors, across the relevant version of Koszul duality. We
begin with (1). By 3.9, across bimodule Koszul duality the diagonal bimodule A
corresponds to the diagonal bicomodule C. Hence by 3.15, across bimodule Koszul
duality the inverse dualising complex A∨ corresponds to D(C). So one is invertible
if and only if the other is, which proves (1). The proof of (2) is identical.

For (3), 3.1(5) shows that across one-sided Koszul duality the left A-module k
corresponds to the left C-comodule C. Hence 3.11 shows that the left A-module
RHomA(k,A) corresponds to the left C-comodule C∗, and now it follows that A is
d-Gorenstein if and only if C is d-Frobenius.

For (4), 3.1(6) shows that across one-sided Koszul duality the left C-contramodule
k corresponds to the leftA-moduleA∗. Hence 3.18 shows that the left C-contramodule
RHomC(k,C∗) corresponds to the left A-module A∗∗. Hence if A is d-Frobenius,
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we have A∗ ≃ A∗∗[d] as left A-modules and hence C is d-Gorenstein. In the other
direction, if C is d-Gorenstein then the left A-module M := A∗ is isomorphic to
M∗[d], which implies that M ∈ refA and hence A ∈ refA. Hence A∗∗ ≃ A and so
A is d-Frobenius.

For (5), 3.10 shows that across two-sided Koszul duality the bimodule A∗ corre-
sponds to the bicontramodule C∗. Hence 3.20 implies that the A-bimodule A∗∗ cor-
responds to the C-bicontramodule C∨. If A is twisted symmetric, we see that there
is an invertible bimodule X such that A∗ ≃ X(A∗∗). Translating this across Koszul
duality, we see that there is an invertible bicomodule Y such that C∗ ≃ Y (C

∨); in
other words C is twisted CY. Conversely if C is twisted CY then with we obtain an
invertible A-bimodule X and an A-bilinear quasi-isomorphism A∗ ≃ X(A∗∗), and
so putting M := A∗ we have A-bilinear quasi-isomorphisms

M ≃ X ⊗L
A (M∗)

≃ X ⊗L
A

(
(X ⊗L

A (M∗))∗
)

substituting the first line into itself

≃ X ⊗L
A RHomA(X,M

∗∗) by hom-tensor

≃M∗∗ since RHomA(X,−) is inverse to X ⊗L
A −

and so M , and hence also A, is reflexive. Hence A is twisted symmetric. The proof
of (6) is identical but one takes X = A[d] everywhere. □

Example 8.4. Let A be a commutative Gorenstein ring, essentially of finite type, and
A→ k any choice of augmentation on A. Since A is d-Calabi–Yau for d = dim(A),
it follows from 8.3 that the Koszul dual of A is a d-symmetric coalgebra.

Example 8.5. Let A be a proper augmented algebra and Td(A) its d-symmetric
completion, as in 7.13. It follows from 8.3 that the coalgebra BTd(A) is d-Calabi–
Yau, c.f. [HLW23].

We can now improve on 3.12, using the following lemma.

Lemma 8.6.
(1) Let R,S be two Gorenstein augmented algebras. If R is proper then R⊗ S

is a Gorenstein algebra.
(2) Let C,D be two Frobenius coalgebras. If C is regular then C ⊗ D is a

Frobenius coalgebra.

Proof. For (1), suppose that R is proper r-Gorenstein and S is s-Gorenstein. We
compute

RHomR⊗S(k,R⊗ S) ≃ RHomR(k,RHomS(k,R⊗ S)) by hom-tensor
≃ RHomR(k,R⊗ RHomS(k, S)) since R is proper
≃ RHomR(k,R[−s]) since S is Gorenstein
≃ k[−r − s] since R is Gorenstein

and hence R ⊗ S is (r + s)-Gorenstein. For (2), suppose that C is regular r-
Frobenius and D is regular s-Frobenius. By [HL22, 5.1] we have a natural algebra
quasi-isomorphism Ω(C ⊗ D) ≃ Ω(C) ⊗ Ω(D). Putting R := ΩC and S := ΩD
we see by 8.3 that R is r-Gorenstein and S is s-Gorenstein. Moreover R is proper
since C is regular. Hence by (1), R ⊗ S is (r + s)-Gorenstein, and hence C ⊗D is
(r + s)-Frobenius by 8.3 again. □
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Corollary 8.7. The pseudocompact algebra A := kJx1, . . . , xnK with xi in degree
di is (n−

∑
i di)-Frobenius.

Proof. Write A as an iterated completed tensor product A ∼= kJx1K⊗̂ · · · ⊗̂kJxnK and
observe that the ith tensorand is (1− di)-Frobenius by 3.12. Since each tensorand
is also regular, the result now follows from 8.6(2). □

Remark 8.8. The number (n −
∑

i di) appearing in the previous theorem is to be
thought of as the virtual dimension of the formal stacky derived scheme A; in
particular A should be ‘derived lci’ in an appropriate sense.

Remark 8.9. Since bimodule Koszul duality is monoidal, a fractional version of 8.3
also holds; we leave the formulation to the reader.

Remark 8.10. In fact, the discrete case of 8.7 can be significantly generalised: we
claim that if R is a discrete commutative complete local augmented Gorenstein k-
algebra of Krull dimension d, then - equipped with its natural topology - the pseu-
docompact k-algebra R is d-Frobenius, i.e. we have a weak equivalence R∗ ≃ R[d] of
pseudocompactR-modules. The following argument to show this is due to Benjamin
Briggs and is a generalisation of the computation of 3.12. Firstly, let a1, . . . , ad be
a system of parameters for R, and put Ii := (ai1, . . . , a

i
d), so that we have an isomor-

phism R ∼= lim←−i
R/Ii. Each of the quotients R/Ii is a zero-dimensional Gorenstein

k-algebra (since a Gorenstein local ring is approximately Gorenstein [Hoc07]), and
hence 0-Frobenius, so we have an isomorphism (R/Ii)

∗ ∼= R/Ii as R-modules. The
linear dual R∗ is by definition holim−−−→i

(R/Ii)
∗ ≃ holim−−−→i

(R/Ii), where we take the
homotopy colimit in the category of pseudocompact R-modules. We may resolve
R/Ii by the Koszul complex Ki := KR(ai1, . . . , a

i
d), so that R∗ becomes lim−→i

Ki,
where again the colimit is taken in pseudocompact R-modules. As in 3.12 we may
compute this colimit as the pseudocompactification of the colimit taken in discrete
R-modules instead. As in [Gre07, 2.B], this latter colimit is precisely the stable
Koszul complex K := KR

∞(a1, . . . , ad), which is the totalisation of a d-dimensional
cube whose vertices are given by the localisations R[a−1

i1
, . . . a−1

in
], where the ij range

over all possible subsets J of {1, . . . , d}. For example, if R = kJxK then the sta-
ble Koszul complex is the localisation map kJxK → kJxK[x−1] with the rightmost
term placed in degree zero, which appears in 3.12 (note that {1} has precisely two
subsets!). If J is nonempty, then the corresponding localisation R[a−1

i1
, . . . a−1

in
] has

no finite dimensional R-module quotients and hence its pseudocompactification is
trivial. It follows that the pseudocompactification of K is R[d], as desired. We
remark that the assumption that the residue field of R is k may be dropped at the
cost of possibly replacing k by a larger field, by the Cohen structure theorem. It is
possible that this argument generalises to connective commutative complete local
dg algebras.

8.2. Proper Frobenius coalgebras. We study how the Frobenius properties on
algebras and coalgebras interact with linear duality. In general, a proper Frobenius
coalgebra will dualise to a Frobenius algebra, but the converse need not be true;
we identify a large class of coalgebras where this is however the case.

Definition 8.11. Say that a coalgebra C is simply connected if it is connective,
C0 ∼= k, and C1

∼= 0.
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This notion is also known as 1-connected; we remark that two simply connected
coalgebras are weakly equivalent if and only if they are quasi-isomorphic. The
following lemma may be of independent interest.

Lemma 8.12. Let C be a proper simply connected coalgebra. Then the natural
localisation Dco(C)→ D(Comod−C) is an equivalence.

Proof. By 5.20, it is enough to show that every object of Dco(C) is C-colocal. If
A := ΩC denotes the Koszul dual of C, this is equivalent to showing that every
object of D(A) is k-colocal. Observe that since C is simply connected, A is a
connective algebra with A0 ∼= k. Then 5.4 now shows that A itself is k-colocal, and
the claim follows. □

Remark 8.13. If C is a proper simply connected coalgebra, then Dco(C) admits
a t-structure with heart the category of k-vector spaces: to see this, observe that
since ΩC is connective with H0(ΩC) ∼= k, the standard t-structure on D(ΩC) has
the desired heart.

Proposition 8.14. Let C be a proper coalgebra and A = C∗ its linear dual algebra.
(1) If C is d-Frobenius then A is (−d)-Frobenius.
(2) If A is (−d)-Frobenius and C is simply connected, then C is d-Frobenius.

If in addition C is strongly proper, the following hold:
3. If C is d-symmetric then A is (−d)-symmetric.
4. If A is (−d)-symmetric and C is simply connected, then C is d-symmetric.

Proof. Since C is proper, it is weakly equivalent to a finite dimensional comodule
over itself, and hence the comodule C∗ is the usual linear dual of C. By dualising, it
follows that A is (−d)-Frobenius if and only if C is quasi-isomorphic to C∗[d] as C-
comodules. Since weak equivalences are quasi-isomorphisms, (1) is now clear. The
second claim follows similarly from 8.12. The third claims are proved identically;
for (4) only needs to observe in addition that if C is simply connected then so is
Ce. □

Remark 8.15. The simply connectedness assumptions of the above proposition can-
not be dropped. Counterexamples can be found in chain coalgebras of topological
spaces; see 9.43 for the details.

Remark 8.16. One can use the above to show that a strongly proper simply con-
nected Frobenius coalgebra admits a Nakayama automorphism. On the Koszul dual
side, this shows that a smooth connected Gorenstein algebra with degree zero part
k is twisted (Ginzburg) Calabi–Yau.

Remark 8.17. Let A be a local Ginzburg CY algebra. As in 5.35, the Koszul dual
A! is a model for the Morita dual pvdA of A. Since A is smooth, BA is a proper
Frobenius coalgebra, and hence A! is a Frobenius algebra. This generalises the
one-object case of Brav and Dyckerhoff’s theorem stating that the Morita dual of
a left CY dg category is a right CY dg category [BD19].

9. Poincaré duality

We discuss Gorenstein duality and Van den Bergh duality for regular Gorenstein
and Ginzburg CY algebras respectively; in particular we view Van den Bergh duality
as a ‘two-sided’ version of Gorenstein duality. As an application we show that a
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topological space is a Poincaré duality space if and only if its coalgebra of chains is
a Frobenius coalgebra. In the simply connected case this recovers Félix–Halperin–
Thomas’s notion of Gorenstein space [FHT88]. We use some facts about dg Hopf
algebras to recover Brav and Dyckerhoff’s version of Poincaré duality [BD19]. We
give some applications from string topology, rational homotopy theory, and Lie
theory.

9.1. Gorenstein duality. We formulate a notion of Gorenstein duality for regular
augmented algebras A, and show that such an A has Gorenstein duality if and only
if it is Gorenstein.

Let A be an augmented algebra. We put ζA := RHomA(k,A) and regard ζA as
a left A-module. We think of ζA as a ‘one-sided dualising complex’ for A.

Let M be a right A-module. The Gorenstein homology of A with coefficients
in M is the vector space hM := M ⊗L

A k and the Gorenstein cohomology of A
with coefficients in M is the vector space hM := RHomA(k,M).

Lemma 9.1. Let A be a regular augmented algebra and M an A-module. There is
a natural vector space quasi-isomorphism hM ≃M ⊗L

A ζA.

Proof. Regularity of A means that k is perfect, and so RHomA(k,−) is naturally
isomorphic to tensoring with the right dual ζA of k. □

If A is a regular augmented algebra, observe that there is a natural quasi-
isomorphism hk ≃ RHomA◦(ζA, k). This allows us to view classes in Hm(hk) as
(homotopy classes of) left A-linear maps ζA → k[m].

Definition 9.2. Let A be a regular augmented algebra and M an A-module. For
a fixed θ ∈ Hm(hk), the cap product with θ is the induced map of vector spaces

− ∩ θ : hM ≃M ⊗L
A ζA

M⊗L
Aθ−−−−→M ⊗L

A k[m] ≃ hM [m].

Say that A has n-Gorenstein duality if there is a class θ ∈ H−n(hk) such that,
for each M , the map − ∩ θ is a quasi-isomorphism.

The minus sign in the definition of n-Gorenstein duality is motivated by the
following theorem:

Proposition 9.3. Let A be a regular augmented algebra. Then A is n-Gorenstein
if and only if A has n-Gorenstein duality.

Proof. Observe that A has n-Gorenstein duality if and only if there is a class θ such
that the corresponding left A-linear map ζA → k[−n] is a quasi-isomorphism; this
latter condition is equivalent to A being n-Gorenstein. □

Remark 9.4. If A is regular Gorenstein, then since hk ≃ BA is (quasi-isomorphic
to) a Frobenius coalgebra, the class θ witnessing Gorenstein duality is necessarily
the image of the counit under the weak equivalence BA ≃ (BA)∗[d].

9.2. Van den Bergh duality. We recall some of the main results of [VdB98] in a
manner similar to our above Gorenstein duality framework. Let A be an algebra.
We will write ξA for the inverse dualising complex RHomAe(A,Ae). If M is an
A-bimodule we will put hhM := HH•(A,M) and hhM := HH•(A,M).

Lemma 9.5. Let A be a smooth algebra and M an A-bimodule. There is a natural
vector space quasi-isomorphism hhM ≃M ⊗L

Ae ξA.
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Proof. Regularity of Ameans that A is a perfect A-bimodule, and so RHomAe(A,−)
is naturally isomorphic to tensoring with the dual ξA of A. □

If A is smooth, then there is a natural quasi-isomorphism hhA ≃ RHomAe(ξA, A)
and hence we can view classes in Hm(hhA) as homotopy classes of A-bilinear maps
ξA → A[m].

Definition 9.6. Let A be a smooth algebra and M an A-bimodule. For a fixed
η ∈ Hm(hhA), the cap product with η is the induced map of vector spaces

− ∩ η : hhM ≃M ⊗L
Ae ξA

M⊗L
Aeη−−−−−→M ⊗L

Ae A[m] ≃ hhM [m].

Say that A has n-Van den Bergh duality if there is a class η ∈ H−n(hhA) such
that, for each M , the map − ∩ η is a quasi-isomorphism.

Proposition 9.7. Let A be a smooth algebra. Then A is n-Calabi–Yau if and only
if A has n-Van den Bergh duality.

Proof. Analogous to the proof of 9.3. □

9.3. Hopf algebras. Our reference for Hopf algebras is [Wit19]; although only
discrete algebras are considered there, the relevant proofs will also work for dg
algebras. Let A be a dg Hopf algebra with comultiplication ∆ and antipode S. We
regard A as an augmented algebra via the counit. Our goal is to prove the following
theorem:

Theorem 9.8. Let A be a dg Hopf algebra with bijective antipode. Suppose that
one of the following two conditions is satisfied:

(1) A◦ is regular.
(2) A is proper.

Then A is a d-Calabi–Yau algebra if and only if it is a d-Gorenstein algebra.

Remark 9.9. If A is a dg Hopf algebra, and A′ is a dg algebra with an algebra
quasi-isomorphism A′ ≃ A, then A′ is Calabi–Yau or Gorenstein precisely when A
is. In particular we may apply the above theorem to A′ verbatim. We will make
use of this observation later.

Remark 9.10. Heuristically, we think of dg Hopf algebras as Koszul dual to commu-
tative coalgebras. In particular, since a proper commutative algebra is Frobenius if
and only if it is symmetric, proving this heuristic would prove the theorem. How-
ever our proof will instead be a comparison of the Gorenstein and the Hochschild
cohomology of A.

Remark 9.11. Finite dimensional Hopf algebras have bijective antipode. Recall that
A is said to be involutive if S2 = id. Certainly an involutive Hopf algebra has
bijective antipode. If A is commutative or cocommutative then it is involutive; in
particular group algebras and universal enveloping algebras have bijective antipode.

To begin the proof of 9.8, we need to define some auxiliary modules of interest.
By the proof of [Wit19, 9.4.1], both ∆ : A → A ⊗ A and id⊗S : A ⊗ A → Ae

are algebra morphisms; write δ for their composition. We let R be the Ae-A-
bimodule given by taking the diagonal Ae-bimodule and restricting the right action
along δ. Concretely, using Sweedler notation, the action is given by the formula
(a⊗ b).(x⊗ y).c = axc1⊗S(c2)yb. Clearly R is free as a left Ae-module. Similarly,
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we write δ′ for the composition (S⊗ id)∆, and L for the analogous A-Ae-bimodule.
We will sometimes wish to view R and L as A-bimodules, in which case we forget
part of the Ae-action.

The following is our key intermediate lemma (cf. [HR24, 4.12] for a similar state-
ment):

Lemma 9.12. Suppose that A is a dg Hopf algebra with bijective antipode. Then:
(1) Up to quasi-isomorphism, R is free as a right A-module and L is free as a

left A-module.
(2) There are A-bilinear quasi-isomorphisms R⊗L

A k ≃ A ≃ k ⊗L
A L.

(3) There is an Ae-A-bilinear quasi-isomorphism RHomAe(L, Ae) ≃ R and an
A-Ae-bilinear quasi-isomorphism RHomAe(R, Ae) ≃ L.

Proof. We will only prove the desired statements for R; the analogous statements
for L then follow by symmetry. Claim (1) follows from the proof of [Wit19, 9.2.9],
which requires that S be bijective (concretely, R is the free right A-module on
the vector space A). Claim (2) follows from Claim (1) together with the fact that
R⊗A k ∼= A, which is proved in [Wit19, 9.4.2] (and does not require any condition
on the antipode). For claim (3), since R is free of rank one as a left Ae-module, we
see that the A-Ae-bimodule RHomAe(R, Ae) is simply given by Ae where the right
action is the regular Ae-action and the left action is given through the antipode S.
But this is precisely L, as desired. □

Remark 9.13. Let A be a dg Hopf algebra and B any dg algebra. If M is a B-
Ae-bimodule we put Mad := RHomAe(L,M), which is a B-A-bimodule. Observe
that Mad ≃ HomAe(L,M) is simply M but with a twisted A-action. The hom-
tensor adjunction shows that when A has bijective antipode, there is a natural
B-A-bilinear quasi-isomorphism

RHomA(k,M
ad) ≃ RHomAe(A,M)

comparing the Gorenstein cohomology of Mad and the Hochschild cohomology of
M . This is a dg version of a theorem of Ginzburg and Kumar [GK93].

Proof of Theorem 9.8. Suppose first that we are in case (1): i.e. A is a dg Hopf
algebra with bijective antipode and A◦ is regular. By 7.3, if A is CY then it is
Gorenstein. For the converse, suppose that A is Gorenstein. Then we have natural
A-bilinear quasi-isomorphisms

A∨ := RHomAe(A,Ae)

≃ RHomAe(R⊗L
A k,A

e) by 9.12(2)
≃ RHomA◦(k,RHomAe(R, Ae)) by hom-tensor
≃ RHomA◦(k,L) by 9.12(3)

≃ RHomA(k,A)⊗L
A L since A◦ is regular

≃ k[−d]⊗L
A L since A is Gorenstein

≃ A[−d] by 9.12(2) again

and hence A is d-Calabi–Yau, as desired. For case (2), we proceed similarly: suppose
that A is a proper Hopf algebra with bijective antipode. Firstly, note that A is CY
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if and only if is symmetric, by 7.31. In particular if A is CY it is Frobenius, and
hence Gorenstein by 7.17. For the converse, suppose that A is Gorenstein. Then
we have natural A-bilinear quasi-isomorphisms

A∗ ≃ (R⊗L
A k)

∗ by 9.12(2)
≃ RHomA(R, k) by hom-tensor
≃ RHomA(R,RHomA(k,A))[d] since A is Gorenstein

≃ RHomA(R⊗L
A k,A)[d] by hom-tensor again

≃ A[d] by 9.12(2) again

and so A is d-symmetric, and hence d-CY, as required. □

Remark 9.14. In fact, one can show that a Gorenstein Hopf algebra A with bijective
antipode is Calabi–Yau: first write k as a homotopy colimit of perfect modules to
obtain a description of RHomA(k,A) as a homotopy inverse limit. Since this inverse
limit is proper by hypothesis, it follows that it is actually equivalent to a finite
inverse limit, and in particular it follows that the natural map RHomA(k,A)⊗L

AL →
RHomA◦(k,L) is a quasi-isomorphism. Now one may run the proof of 9.8 in case
(1) to conclude that A is CY. The same argument shows that if A is a Calabi–
Yau Hopf algebra with bijective antipode such that RHomA(k,A) is proper, then
A is Gorenstein. The authors are unaware of any dg Hopf algebra (with bijective
antipode or not) which is CY and not Gorenstein.

We finish by giving an example. Recall that a Lie algebra g has a universal
enveloping algebra U(g), which is an involutive Hopf algebra. We let CE(g) denote
the Chevalley–Eilenberg coalgebra of g, which computes its Lie algebra homology.
In characteristic zero, these two objects are Koszul dual. Finally, recall that a Lie
algebra g is unimodular if every element x ∈ g satisfies tr(ad(x)) = 0.

Proposition 9.15. Let k be a field of characteristic zero and g be a finite dimen-
sional Lie algebra over k. Then the following are equivalent:

(1) g is unimodular.
(2) Ug is a Calabi–Yau algebra.
(3) Ug is a Gorenstein algebra.
(4) CE(g) is a Frobenius coalgebra.
(5) CE(g) is a symmetric coalgebra.

We remark that a quasi-isomorphism CE(g) ≃ CE(g)∗[d] implies a Poincaré
duality statement for the (co)homology of g; indeed one can view this proposition
as a ‘commutative’ version of our characterisation of Poincaré duality spaces.

Proof. Since g is finite dimensional, U(g) has finite global dimension (equal to the
dimension of g). The equivalence (1) ⇐⇒ (2) now follows from [HVOZ10, 2.3]
(ultimately, this result goes back to Hazewinkel [Haz70]). Since U(g) has finite
global dimension, it is regular, and hence (2) ⇐⇒ (3) follows from 9.8. Since we
have CE(g) ≃ B(U(g)), the equivalences (2) ⇐⇒ (5) and (3) ⇐⇒ (4) follow
from 8.3. □

Remark 9.16. A more structured version of this example appears as [HR24, Theo-
rem 1.3]; since U(g) is regular one can lift the Poincaré duality class to a class in
cyclic homology.
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Remark 9.17. We believe that a similar result should hold if g is assumed to be a
finite dimensional L∞-algebra (for example, the minimal model of a proper dg Lie
algebra). More accurately, we expect (1) and (3) to be equivalent in this setting;
since U(g) need not be regular or proper we may not be able to apply 9.8. One
can prove this in restricted settings: for example if g is a finite dimensional graded
Lie algebra such that [x, y] = 0 for all x of even degree and y of odd degree, then
U(g) decomposes as the tensor product of a regular algebra U(geven) and a finite
dimensional algebra U(godd). Analysing these pieces separately one can conclude
that U(g) is Gorenstein if and only if g is unimodular. To prove the desired claim
in generality, one could try to generalise the main result of [Haz70] to the L∞
setting; the techniques of [BL15] should be relevant, especially the interpretation
of unimodularity in terms of the Berezinian volume form.

Remark 9.18. A dg Hopf algebra can be thought of as a noncommutative derived
group scheme; it would be interesting to interpret the results above geometrically.

9.4. Poincaré duality spaces. The material in this section is inspired by [BD19,
§5.1], which was itself inspired by [Lur11a]. Similar results appear in [HR24, §4.2].
Recall that a simplicial set K is grouplike if its homotopy category hK is a
groupoid.

Example 9.19. A Kan complex is grouplike, so in particular the singular simplicial
set of a topological space is grouplike. In the sequel we will identify topological
spaces and their singular simplicial sets.

Let C•(K) be the coalgebra of simplicial chains on K; when K is a topological
space, C•(K) is the coalgebra of singular chains on K. We will also write C•(K) for
the linear dual of C•(K), regarded as a plain dg algebra with no pseudocompact
structure. Let G(K) denote the Kan loop group of K; when K is (the singular
simplicial set of) a path connected topological space, GK is homotopy equivalent
to the based loop space ΩK and we will interchange these notions freely. Since
G(K) is a simplicial group, C•(G(K)) is an algebra under composition of loops. In
fact, C•(G(K)) is an involutive dg Hopf algebra; the coalgebra structure is that of
simplicial chains and the antipode is given by reversing loops. Note that when K
is connected, C•(G(K)) is connective.

Remark 9.20. If X is a topological space and one uses Moore loops, then C•(ΩX)
becomes a dg algebra, and there is a quasi-isomorphism C•(ΩX) ≃ C•(GSingX) of
dg algebras. In the sequel we will tacitly assume that C•(ΩX) is a dg algebra in
this manner.

Theorem 9.21 ([CHL21, RZ18]). If K is a grouplike simplicial set, then there is
a quasi-isomorphism ΩC•(K) ≃ C•G(K).

Remark 9.22. For the topologically inclined reader, we emphasise that the dg coal-
gebra C•Y depends on a choice of base field k, which we suppress from the notation.
In particular, if Y → Y ′ is a k-homology isomorphism between simply connected
spaces, then C•Y → C•Y

′ is a weak equivalence.

Remark 9.23. In general if K is a connected simplicial set then C•G(K) is a local-
isation of ΩC•(K) [CHL21, 4.4].

Example 9.24. Let n > 1 and consider the coalgebra C•S
n of chains on the n-

sphere. This coalgebra is quasi-isomorphic to the cosquare-zero extension k⊕ k[n],
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and since Sn is simply connected it must in fact be weakly equivalent. Hence C•S
n

is a Frobenius coalgebra and its Koszul dual C•ΩS
n is a Gorenstein algebra. We

will later see that both of these facts follow from the fact that Sn is a Poincaré
duality space. In fact, C•S

1 is also a Frobenius coalgebra for the same reason.

IfX is a path connected topological space, then the derived categoryD(C•Ω(X))
is equivalent to the ∞-category of ∞-local systems of vector spaces on X, since as
in [BD19] it is identified with the category of ∞-functors from X to D(k). Since
X is canonically isomorphic to its opposite, the derived category of left C•Ω(X)-
modules is also identified with the category of∞-local systems. One can recover the
homology and cohomology of X with values in a local system M via the formulas

H•(X,M) ≃M ⊗L
A kX

H•(X,M) ≃ RHomA◦(kX ,M)

where A = C•Ω(X) and kX denotes the constant local system on X with value k,
which corresponds to a choice of augmentation A → k, i.e. a basepoint. Since we
work with path connected spaces the choice of a basepoint will not be important.
In particular, BA ≃ k ⊗L

A k is identified with H•(X, k).
Say that a topological space is finitely dominated if it is a retract (in the ho-

motopy category) of a finite CW complex. A finitely dominated space is homotopy
equivalent to a CW complex [Hat02, A.11].

Example 9.25. A compact topological manifold is finitely dominated; in fact a
compact topological manifold is homotopy equivalent to a finite CW complex by
Kirby–Siebenmann.

Remark 9.26. A finitely dominated space is homotopy equivalent to a finite CW
complex precisely when its Wall finiteness obstruction vanishes. In particular, a
simply connected finitely dominated space is a finite CW complex.

Remark 9.27. A necessary condition for a CW complex X to be finitely dominated
is that its total integral homology H∗(X,Z) is a finitely generated abelian group.
If X is simply connected then this condition is sufficient [Hat02, 4C.1].

Remark 9.28. If G is a group, BG is typically not finitely dominated.

The relevance of finitely dominated spaces for us will be the following proposition:

Proposition 9.29. Let X be a path connected finitely dominated topological space.
Then C•Ω(X) is smooth.

Proof. This is [BD19, 5.1]. The idea is as follows: suppose that X is a homotopy
retract of a finite CW complex Y , so that C•Ω(X) is a homotopy retract of C•Ω(Y ).
This latter algebra acquires a finite cell decomposition from that of Y , and this
implies that C•Ω(X) is a finite type algebra in the sense of [TV07], and hence
smooth. □

Let X be a path connected finitely dominated topological space. Then as in 9.2,
given a class θ ∈ Hd(X, k) and an A-module M we obtain a cap product map

− ∩ θ : H•(X,M)→ Hd−•(X,M)

which agrees with the classical cap product map when M = k. Note that the sign
conventions occur since we switch between homological and cohomological indexing.
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Definition 9.30. Let X be a path connected finitely dominated topological space.
Say that X is a d-Poincaré duality space if there is a class θ ∈ Hd(X, k) such
that, for all ∞-local systems M , the natural map

− ∩ θ : H•(X,M)→ Hd−•(X,M)

is a quasi-isomorphism.

Note that the above definition is a chain-level version of classical Poincaré duality.

Definition 9.31. Let X be a path connected topological space. Say that X is a
d-Frobenius space if C•X is a d-Frobenius coalgebra.

By 8.3 combined with 9.21, X is a Frobenius space if and only if C•ΩX is a
Gorenstein algebra. Our main application is the following theorem, which shows
that a sufficiently finite space is a Poincaré duality space if and only if it is a
Frobenius space:

Theorem 9.32. Let X be a path connected finitely dominated topological space.
The following are equivalent:

(1) X is a d-Poincaré duality space.
(2) X is a d-Frobenius space.
(3) C•X is a d-Frobenius coalgebra.
(4) C•X is a d-symmetric coalgebra.
(5) C•ΩX is a d-Gorenstein algebra.
(6) C•ΩX is a d-Calabi–Yau algebra.

Proof. The equivalence of (2) and (3) is definitional, and we have already observed
that (3) is equivalent to (5). The equivalence of (1) and (5) follows from 9.3, since by
definition X is a Poincaré duality space if and only if C•ΩX has Gorenstein duality.
By 9.9 and 9.20 we may assume that C•ΩX is an involutive dg Hopf algebra, which
is necessarily regular by 9.29. So the equivalence of (5) and (6) follows from 9.8.
The equivalence of (6) with (4) follows from 8.3 combined with 9.21. □

Remark 9.33. Although it is not possible to formulate our notion of Poincaré duality
space for non-finitely dominated topological spaces, we may still study the other
conditions of 9.32. Indeed, if X is any path connected topological space then the
conditions (2), (3) and (5) are all equivalent. Moreover, (4) is equivalent to (6).

Remark 9.34. Let X be any topological space. Note that if C•ΩX is d-Gorenstein
then we obtain vector space isomorphisms Hi(X)∗ ∼= Hd−i(X), and so X satisfies
a weak form of Poincaré duality.

Example 9.35. Let X := CP∞, so that ΩX is S1. Then C•ΩX is quasi-isomorphic
to k[ϵ]/ϵ2, which is easily seen to be Gorenstein. Hence X is a Frobenius space.
However, X is not a Poincaré duality space, since it is not finitely dominated.

Example 9.36 (Rational homotopy theory). Take k = Q. If X is a simply connected
space we put W (X) := π∗(ΩX)⊗Q, the Whitehead Lie algebra of X. If U denotes
the universal enveloping algebra then we have U(WX) ≃ C•ΩX. If L is a dg Lie
algebra, say that L is Gorenstein when UL is. Then a path connected finitely
dominated topological space X is a Poincaré duality space precisely when WX is
a Gorenstein dg Lie algebra. Presumably this is (commutative-Lie) Koszul dual to
a Frobenius condition on the minimal Sullivan model of X.
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Example 9.37 (Lie groups). Let G be a compact Lie group. Take k = Z/p and
consider the dg Hopf algebra C•G. If π0G is a finite p-group, then C•G is a
Gorenstein algebra [DGI06, 10.2] and hence a CY algebra by 9.8. Moreover, since
C•G is proper, it is symmetric by 7.31 (this is well known when G is finite, in
which case we have C•G ∼= kG). If BG denotes the classifying space of G, then we
have BC•G ≃ C•BG since ΩBG ≃ G as topological groups. Hence the coalgebra
C•BG is both symmetric and Calabi–Yau. Similar statements can be derived for
the p-completions Ĝp and B̂Gp using [DGI06, 10.3] and the fact that ΩB̂Gp ≃ Ĝp

if G is connected. It would be interesting to study similar properties for p-compact
groups.

Example 9.38 (String topology). Let X be a Poincaré duality space. Then [BD19,
5.3(3)] shows the well-known statement, originally due to Jones, that if LX denotes
the free loop space of X, then there is an S1-equivariant quasi-isomorphism

HH•(C•ΩX) ≃ C•(LX)

and Van den Bergh duality now gives a quasi-isomorphism

HH•(C•ΩX) ≃ C•(LX)[−d].
This recovers some results of [Vai07] for X aspherical and [FT08] for X simply
connected.

Remark 9.39. Instead of using path connected topological spaces in our above
theorems, we could instead use pointed topological spaces and restrict to the path
component of the point.

Remark 9.40. Let X be a path connected space such that H•(ΩX) is proper; for
example, BG for a finite group G. Then the following are equivalent:

(1) X is a d-Frobenius space.
(2) C•X is a d-Frobenius coalgebra.
(3) C•X is a d-symmetric coalgebra.
(4) C•Ω(X) is a d-Gorenstein algebra.
(5) C•Ω(X) is a d-Calabi–Yau algebra.

To see this, follow the proof of 9.32 and use 9.8(2) instead of 9.8(1). We suggest
that any of the above equivalent conditions are a replacement for the concept of
Poincaré duality space for spaces that are not finitely dominated but do have finite
loop homology. In this sense, spaces with finite loop homology are ‘Koszul dual’ to
finitely dominated spaces.

9.5. Simply connected spaces. We refine our Poincaré duality results when the
spaces under consideration are simply connected. Note that a simply connected
finitely dominated space is homotopy equivalent to a finite CW complex, since as
in 9.26 its Wall finiteness obstruction necessarily vanishes. Recall from 8.11 the
definition of a simply connected coalgebra.

Lemma 9.41. Let X be a simply connected finitely dominated space. Then C•X
is weakly equivalent to a simply connected coalgebra.

Proof. Up to homotopy equivalence we may assume that X is a finite CW complex
with one 0-cell and no 1-cells. Adams and Hilton [AH56] proved that C•ΩX is
quasi-isomorphic to an algebra of the form A = (T (V ), d) where V is a graded
vector space concentrated in strictly negative cohomological degrees. Hence BA ≃
BC•ΩX ≃ C•X is a simply connected coalgebra for degree reasons. □



50 BOOTH, CHUANG, LAZAREV

Theorem 9.42. Let X be a simply connected finitely dominated space. Then the
following are equivalent:

(1) X is a d-Poincaré duality space.
(2) C•X is a (−d)-Frobenius algebra.
(3) C•X is a (−d)-symmetric algebra.
(4) C•X is a (−d)-Gorenstein algebra.
(5) C•X is a (−d)-Calabi–Yau algebra.

Proof. Since X is finitely dominated, C•ΩX is smooth, and hence C•X is a strongly
proper coalgebra by 5.25. Moreover, since X was simply connected, we may assume
that C•X is simply connected by 9.41. Recalling that X is a d-Poincaré duality
space if and only if C•X is a d-Frobenius (equivalently symmetric) coalgebra (9.32),
the equivalence of the first three statements follows from 8.14, since C•X is the
linear dual of C•X. The implication (2) =⇒ (4) is 7.17. Since X is homotopy
equivalent to a finite CW complex, cellular cohomology gives us a finite dimensional
algebra A and a quasi-isomorphism A ≃ C•X. The implication (4) =⇒ (2) now
follows from 7.33. Finally, the equivalence of (3) and (5) is 7.31. □

Example 9.43. The simply connectedness assumption in the above theorem cannot
be dropped. Let X be an acyclic space with nontrivial fundamental group (such
spaces can be obtained as the fibre of the Quillen plus construction). Then C•X ≃ k
is a 0-Frobenius algebra. If X was a 0-Poincaré duality space, then for all ∞-
local systems F on X we would have isomorphisms Hi(X,F) ∼= H−i(X,F). We
will show that this leads to a contradiction. Indeed, let ρ : kπ1(X) → V be
a nontrivial representation and let V be the corresponding local system. Since
H−1(X,V) ∼= 0, we need only show that H1(X,V) need not vanish. But the natural
t-structure on D(C•ΩX) with heart the category of kπ1-representations yields a
natural isomorphism H1(X,V) ∼= H1(kπ1, V ) with group cohomology, which need
not vanish.

The above gives a new proof of a result of Félix, Halperin, and Thomas on Goren-
stein spaces; recall that a topological space is Gorenstein if C•X is a Gorenstein
algebra.

Proposition 9.44. (cf. [FHT88]) Let X be a path connected finitely dominated
topological space. If X is a Poincaré duality space, then X is a Gorenstein space.
The converse holds if X is simply connected.

Proof. As in the proof of 9.42, C•X is a proper coalgebra, and hence if X is a
Poincaré duality space then C•X is a Frobenius algebra by 8.14. Moreover, a
Frobenius algebra is Gorenstein by 7.17, which proves the first claim. The second
claim follows from 9.42. □

Remark 9.45. Let X be a path connected finitely dominated topological space.
Then for the statements of 9.42, statement (1) implies all the others. Statement (2)
implies statement (4), and the converse is true if C•X admits a finite dimensional
model. Statements (3) and (5) are equivalent.
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