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The theory of conilpotent Koszul duality has its roots in Quillen’s comparison
between the commutative and Lie approaches to rational homotopy theory [11].
The modern formulation of conilpotent Koszul duality, due to Positselski and
Lefèfvre-Hasegawa, is as a Quillen equivalence between the categories of augmented
dg algebras and conilpotent dg coalgebras [7, 9]. The functors in question are

the bar construction B : dgAlgaug → dgCogconil, which roughly sends A to
a twist of the tensor coalgebra on its augmentation ideal Ā, and its left adjoint
Ω : dgCogconil → dgAlgaug, defined analogously. The model structure on dg
algebras here is the usual one - weak equivalences are the quasi-isomorphisms,
fibrations are the degreewise surjections - but important here is both that the
weak equivalences in dgCogconil are created by Ω, and that they are strictly
stronger than the quasi-isomorphisms.1

One should think of this algebra-coalgebra Koszul duality as a noncommutative
version of the derived-geometric Lurie–Pridham correspondence between formal
moduli problems and dg Lie algebras [10, 8]. Indeed, in characteristic zero, dg Lie
algebras are Koszul dual to cocommutative conilpotent dg coalgebras, which - fol-
lowing a philosophy going back to Hinich [5] - one should think of as formal moduli
problems.2 At a high level, one should think of this as calculus - a formal moduli
problem has a ‘linearisation’ to its tangent complex, which is a dg Lie algebra, and
working formally locally ensures that one can always go back via integration. From
this perspective, the above Quillen equivalence shows that augmented dg algebras
control noncommutative deformation problems via a similar sort of calculus.3

Two natural questions arise: firstly, is there a version of ‘nonconilpotent Koszul
duality’, and secondly, what kind of deformation-theoretic interpretation should
this have? Conilpotency in our coalgebras corresponds to the fact that our formal
moduli problems accept Artinian local dg algebras as input. So if we want to
drop conilpotency (and also the (co)augmentations), our resulting notion of de-
formation problems should accept all finite dimensional algebras as input. In the
commutative world, every finite dimensional algebra splits as a product of local
algebras, but this is false in noncommutative geometry (think of, for example,
matrix algebras), so these moduli problems should contain interesting ‘genuinely
noncommutative’ data that allows separate points to communicate.

Dropping the (co)augmentations corresponds to introducing curvature on the
other side of the bar-cobar adjunction.4 Essentially, a curved algebra is like a

1The cofibrations in dgCogconil are the degreewise injections.
2a.k.a. ‘formal stacks’ or ‘derived deformation functors’.
3This works over any base field, essentially since dg algebras always model E1-algebras. In

positive characteristic, dg Lie algebras are not the correct objects to use, and one must instead

use Brantner and Mathew’s partition Lie algebras [3].
4A fact well known to Positselski, who also gives a Quillen equivalence between conilpotent

curved coalgebras and all dg algebras [9].
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dg algebra but instead of asking that the differential squares to zero we ask that
d2(x) = [h, x] for some degree two ‘curvature element’ h (in particular, a curved
algebra with zero curvature is the same thing as a dg algebra). Morphisms of
curved algebras have two components: an algebra morphism and a change of
curvature term.5 This means, for example, that the natural inclusion dgAlg →
cuAlg is not full. Curved coalgebras are defined similarly.

When removing the conilpotency assumption, one needs to replace the bar
construction B by the extended bar construction B̌; loosely this is a completion
of the usual bar construction.6 For dg algebras the properties of the extended
bar construction were first worked out in detail by Anel and Joyal [1] and in the
curved setting, Guan and Lazarev [4] showed that there is an adjunction

Ω : cuCog←→ cuAlg : B̌.

Our main theorem is that the categories cuAlg and cuCog admit model structures
making the above adjunction into a Quillen equivalence.7 As the notion of quasi-
isomorphism does not make sense for curved (co)algebras, we need to formulate
a new type of weak equivalence, the Maurer–Cartan equivalences. An MC
element in a curved algebra is an element x of degree one with dx+x2+h = 0. We
denote the set of MC elements in E by MC(E), and we caution that this set may
be empty!8 Just as in the dg case, MC elements in the convolution algebra mediate
the bar-cobar adjunction: if C is a curved coalgebra and A is a curved algebra, then
the graded vector space hom(C,A) admits the structure of a curved algebra, and
there are natural bijections cuCog(C, B̌A) ∼= MChom(C,A) ∼= cuAlg(ΩC,A). If
E is any curved algebra, we define a dg category MCdg(E) ⊆ Tw(E) whose objects
are the MC elements of E and whose hom-complexes are given by two-sided twists.
Abbreviating MCdg(C,A) := MCdg hom(C,A), we can thus view MCdg(C,A) as

a dg category of maps C → B̌A (equivalently, ΩC → A). We then say that a map
f of curved algebras is an MC equivalence if for all9 curved coalgebras C, the
induced map MCdg(C, f) is a quasi-equivalence (a.k.a. Dwyer–Kan equivalence)
of dg categories. MC equivalences for curved coalgebras are defined analogously.

We show that cuCog is a model category, where the cofibrations are the in-
jections and the weak equivalences are the MC equivalences. Moreover, we show
that cuAlg is a model category, where the fibrations are the maps p inducing
fibrations MCdg(C, p) for all curved coalgebras C, and the weak equivalences are

5A curved algebra is a curved A∞-algebra with only three nonzero operations m0,m1,m2,

and a morphism is then the same as an A∞ morphism with only two components f1, f2.
6Heuristically, B̌ is like B but where one replaces the ‘cofree conilpotent coalgebra’ functor -

which is the tensor coalgebra functor - with the ‘cofree coalgebra’ functor, which is much wilder.

For example, the cofree coalgebra on a one-dimensional vector space has dimension at least as
large as the number of closed points in A1

k - a sharp contrast to the tensor coalgebra, which

always has dimension ℵ0.
7Strictly, cuAlg is not cocomplete as it lacks an initial object, so we formally add one; dually

we must also finalise cuCog.
8We have MC(E) ∼= cuAlg(k,E), and this set is nonempty precisely when E is curved

isomorphic to a dg algebra; in fact, this gives an equivalence cuAlgk/ ≃ dgAlg.
9It is actually enough to test against all finite dimensional curved coalgebras.
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the MC equivalences.10 Finally, we show that the extended bar-cobar adjunction
is a Quillen equivalence.11

Following [1], we also show that cuCog is a closed symmetric monoidal model
category under ⊗, and that cuAlg is model enriched over cuCog. The external
homs are given by setting hom(ΩC,A) = B̌ hom(C,A) and then Kan extending
in the first variable. We moreover show that our Koszul duality equivalence is
compatible with both the curved and uncurved versions of conilpotent Koszul du-
ality, as well as Holstein and Lazarev’s categorical Koszul duality [6]; in particular
we show that the left adjoint of the MCdg functor gives a Quillen coreflection of
dgCat into cuAlg, and hence that the homotopy theory of dg categories fully
faithfully embeds into that of dg algebras.

Finally, we study the global analogue of noncommutative formal moduli prob-
lems, which we call Maurer-Cartan stacks, defined as the left exact∞-functors
from cuAlgfd to any finitely complete ∞-category. These are geometric objects
modelled on (curved) profinite completions, rather than pro-Artinian completions.
We give (pro)representability results for MC stacks valued in simplicial sets and
in dg categories, and moreover show that these are compatible with Pridham and
Lurie’s (pro)representability results for formal moduli problems.
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10To partly alleviate this apparent asymmetry, a key intermediate step is to show that a
morphism i of curved coalgebras is an injection if and only if, for all curved algebras A, the map

MCdg(i, A) is a fibration. The rough idea of the proof is to reduce to cosquare-zero extensions

and finite dimensional cosemisimple coalgebras. Whilst every fibration of algebras is a surjection,
the converse is not true, and so some asymmetry remains.

11Using the results of [4] it is relatively straightforward to show that the corresponding ∞-
categories are equivalent; the difficult part of [2] consists of actually constructing the model
structures.
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