
HOW TO INVERT WELL-POINTED ENDOFUNCTORS

MATT BOOTH

Abstract. In this short note we observe that Kelly’s transfinite construction
of free algebras yields a way to invert well-pointed endofunctors. In enriched
settings, this recovers constructions of Keller, Seidel, and Chen–Wang. We also
relate this procedure to localisation by spectra and to Heller’s stabilisation.

1. Enriched preliminaries

Throughout we will let (V,⊗,1) be a bicomplete closed symmetric monoidal
category. We write the internal hom-objects as V(x, y) ∈ V and the homsets as
HomV(x, y) ∈ Set. We will assume that HomV(1,−) is faithful, so that we can
regard the objects of V as sets with extra structure (we call such monoidal categories
concrete). We will moreover assume that 1 is compact, so that limits and filtered
colimits in V are created in Set.1 The reader who does not care for generalities can
imagine V to be Set, Vect, or dgVect. If C is a V-category, we denote the enriched
hom-objects by C(x, y) ∈ V and the underlying homsets by HomC(x, y) ∈ Set.

If D is an ordinary category, recall that it has an ind-category indD whose
objects are given by diagrams X : J → D where J is small and filtered, and
morphisms are given by HomindD(X,Y ) := lim←−i lim−→j

HomD(Xi, Yj). Note that
indD is an accessible category, and is locally finitely presentable provided that D is
cocomplete (e.g. [Isa01, 11.1]). There is an embedding D ↪→ indD sending an object
x to the diagram ∗ x−→ D. If D has filtered colimits, this has an adjoint given by lim−→.

If C is a V-category, then since limits and filtered colimits in V are created in
Set then the exact same formulas provide a canonical V-enrichment for ind C. We
denote this enriched ind-category by Ĉ, so that the underlying category of Ĉ is
ind C. Again, there is a V-functor C ↪→ Ĉ, which is universal in the sense that any
V-functor F : C → D extends to a V-functor F̂ : Ĉ → D̂ by requiring it to commute
with formal filtered colimits. By construction, F̂ is accessible (by which we mean
simply that the underlying functor is accessible).

There is a deep theory of enriched accessible categories and the closely related
notion of enriched ind-completions [Kel82, BQ96, LT22, LT23]. When the enriching
category V has nontrivial homotopy theory, one also wants enriched ind-categories
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that take this homotopy theory into account: when V = dgVect such a homotopy
ind-dg-completion is given in [GLSV24]. In this note we take a more naïve approach.

2. Well-pointed endofunctors

The arguments in this section are all essentially due to Kelly [Kel80], although
we circumvent some of the issues encountered there by passing to ind-categories.
Our presentation here was heavily influenced by [nLa25]. From now on, V is a
concrete bicomplete closed symmetric monoidal category with compact unit. All
categories, functors, etc. will be enriched over V. A pointed endofunctor on a
category C is a natural transformation θ : id→ Ω of functors on C. Say that (Ω, θ) is
well-pointed if θΩ = Ωθ: for all X we have θΩX = Ω(θX) as maps ΩX → Ω2X. An
Ω-algebra is an object X together with a map ΩX → X such that the composition
X

θX−−→ ΩX → X is the identity. There is an evident category of Ω-algebras Alg(Ω),
constructed as a slice category.

Lemma 1. If θ is well-pointed then an object X admits the structure of an Ω-algebra
if and only if θX is invertible; in this case the algebra structure is unique.

Proof. This is [Kel80, Proposition 5.2]. If θX is invertible then one takes the algebra
structure map ΩX → X to be its inverse. Conversely, if f : ΩX → X is any
morphism then well-pointedness yields a commutative diagram

ΩX X

Ω2X ΩX

f

ΩθX θX

Ωf

which shows that θXf = Ω(fθX). If f is an algebra then this shows that f is both
a left and right inverse of θX , and thus θX is invertible. It is clear that the algebra
structure must be unique. □

In particular, if θ is well-pointed then the category Alg(Ω) is naturally a full
subcategory of C. By extending (Ω, θ) to a well-pointed endofunctor (Ω̂, θ̂) of Ĉ, we
see that we may define a functor Ω̂∞ : Ĉ → Ĉ by

Ω̂∞(X) := lim−→

(
X

θ̂X−−→ Ω̂X
θ̂ΩX−−−→ Ω̂2X

θ̂Ω2X−−−→ · · ·
)

where we take the colimit in the ind-category.2

Theorem 2. If C is cocomplete, then Ω̂∞ is a reflection of Ĉ into Alg(θ̂).

Proof. This is [Kel80, Remark 6.3], which applies since Ĉ is locally presentable and
in particular well-copowered. The idea is simple: by construction Ω̂ is accessible,
so for any ind-object X we obtain a natural map Ω̂Ω̂∞(X)→ Ω̂∞(X) that makes
Ω̂∞(X) into an Ω̂-algebra. It follows that Ω̂∞ is a reflection of Ĉ into Alg(Ĉ). □

From now on we assume that C is cocomplete. The following definition, at least
in the enriched setting, is due to Wolff [Wol73, Wol74]:

2If X : J → C is a filtered diagram, then the colimit of the associated diagram J
X−→ C → Ĉ is

precisely the ind-object X. One can easily prove this using the Yoneda lemma.
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Definition 3. A functor F : C → D inverts a natural transformation θ between
endofunctors of C if for every X in C, the morphism F (θX) is an isomorphism. The
localisation of C along θ is the initial functor that inverts θ; i.e. it is a functor
γ : C → C′ such that if F : C → D inverts θ then there exists a unique F ′ : C′ → D
such that F = F ′γ.

Let Ω∞ denote the composition C ↪→ Ĉ Ω̂∞

−−→ Alg(Ω̂). We have an isomorphism
Alg(Ω̂)(Ω∞X,Ω∞Y ) ∼= lim←−n lim−→m

C(ΩnX,ΩmY ), since Alg(Ω̂) is a full subcategory
of Ĉ. On the other hand we also have isomorphisms

Alg(Ω̂)(Ω∞X,Ω∞Y ) ∼= Ĉ(X,Ω∞Y ) ∼= lim−→
m

C(X,ΩmY )

which will be of more use to us. Write LΩ(C) ↪→ Ĉ for the essential image of Ω∞.

Theorem 4. Ω∞ : C → LΩ(C) is the localisation of C at θ.

Proof. Suppose F : C → D is a functor such that every F (θX) is an isomorphism.
Extend F to a functor F̂ : Ĉ → D̂ and consider the composition F̂Ω∞. By
construction we have

F̂Ω∞X ∼= lim−→
(
FX → FΩX → FΩ2X → · · ·

)
but by assumption, every map in this colimit is an isomorphism, and so we see
that F̂Ω∞ ∼= F . In other words, F factors through the essential image of Ω∞. We
need to check that the factoring map F̂ is unique. So let G : LΩ(C) → D be any
functor such that GΩ∞ = F . Pick X ∈ LΩ(C). Since LΩ(C) is defined to be the
essential image of Ω∞, there must be X ′ ∈ C such that X ∼= Ω∞X ′, and hence
G(X) = F (X ′) = F̂ (X). Let

GΩ∞X,Ω∞Y : LΩ(C)(Ω∞X,Ω∞Y ) −→ D(GΩ∞X,GΩ∞Y )

be the component maps of G. Replacing LΩ(C)(Ω∞X,Ω∞Y ) by a colimit as above,
we see that GΩ∞X,Ω∞Y is an inverse limit of maps of the form

ϕm : C(X,ΩmY ) −→ D(GΩ∞X,GΩ∞Y ).

We have a commutative diagram in V (cf. the proof of [Sei08, Lemma 1.1])

C(X,ΩmY ) D(GΩ∞X,GΩ∞Y )

D(GΩ∞X,GΩ∞ΩmY )

ϕm

GΩ∞
X,ΩmY

ψ

where ψ is induced by the canonical morphism Y → ΩmY . Because Ω∞ inverts θ,
it follows that ψ is an isomorphism. In particular, GΩ∞X,Ω∞Y is the inverse limit
of the system of maps GΩ∞

X,ΩmY = F̂Ω∞
X,ΩmY . Running the same argument for F̂

shows that G must be naturally isomorphic to F̂ . □

3. Examples

Here we let k be a field; all categories will be linear over k.

Example 5. Let C be a k-linear category and T : F → id a well-copointed3 endofunc-
tor on C. Running our constructions in Cop yields a localisation LF (Cop) that agrees

3i.e. T op is well-pointed; Seidel uses the term ambidextrous [Sei08].
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with Seidel’s construction [Sei08]. In particular, if C is a pretriangulated dg category
and F is a dg functor, then LF (Cop) can be identified as the dg quotient of Cop by
the pretriangulated subcategory spanned by those objects that are annihilated by
some power of F [Sei08, Lemma 1.3].

Example 6. Let C be a dg-k-category and θ : id→ Ω a well-pointed dg endofunctor
on C. Then LΩ(C) is precisely the localisation SC constructed by Chen and Wang
[CW24, §6]4. Hence if C is pretriangulated then LΩ(C) is a model for the dg
quotient C/thick (cone(θX) : X ∈ C) by [CW24, Theorem 6.4]. Note that LΩ(C) is
a strictification of Keller’s ind-categorical description of the dg quotient [Kel99].
Indeed, if D is a pretriangulated dg subcategory of C then the dg quotient C/D can
be described as the subcategory of Ĉ on those ind-objects X right orthogonal to D
and which fit into an exact triangle c→ X → Y → with c ∈ C and Y ∈ D̂, as made
clear in [Dri04, 4.9]. This provides a high-level viewpoint on some computations of
stable Ext made by the author in [Boo21, Theorem 6.4.6].

Example 7. Let A be a dg-k-category and F : A → A a dg endofunctor. Define
a new dg category AF with the same objects as A, and hom-complexes given by
AF (X,Y ) := ⊕nA(FnX,Y ). The composition of F iX → Y and F jY → Z is given
by F i+jX → F iY → Z. The resulting endofunctor F of AF is well-pointed, by the
natural transformation with components idFX ∈ AF (X,FX); this is in fact the
universal way to make F well-pointed. Then LF (AF ) is Keller’s dg orbit category
[Kel05, 5.1]. Note that LF (AF ) need not be pretriangulated, even if A was.

4. Spectra

As above, all categories, functors, etc. remain enriched over V. Let C be a
category and Ω an endofunctor.5 A spectrum is a sequence X0, X1, X2, . . . of
objects in C with morphisms σn : Xn → ΩXn+1. A spectrum is an Ω-spectrum
when the morphisms σn are all isomorphisms.6 There is an evident category SpΩ(C)
of spectra together with a full subcategory SpΩ(C) of Ω-spectra. Since limits in
V-Cat are computed pointwise, there is an equivalence of categories

SpΩ(C) ∼= lim←−
(
· · · Ω−→ C Ω−→ C Ω−→ C

)
and when V = Set then SpΩ(C) can also be obtained as the analogous 2-limit taken
in Cat.7 Observe that the map X 7→ Xn which assigns a spectrum its nth level can
be regarded as a functor SpΩ(C)→ C.

There is a shift endofunctor S of SpΩ(C) given on sequences by (SX)i = Xi+1.
The Ω functor extends to an endofunctor of SpΩ(C), and one can easily check that
ΩS = SΩ. There is a natural transformation σ : id→ ΩS defined on sequences by
σn : Xn → ΩXn+1 = ΩS(Xn), making ΩS into a well-pointed endofunctor.8

4The motivating example of [CW24] is the case when C is the Yoneda dg category of an algebra
A and Ω is the noncommutative differential forms functor; the localisation SC is then a model
for the dg singularity category of A.
5When V = Ab then this is precisely the notion of looped category from [Bel00].
6One sometimes calls the first kind of object a prespectrum and the other simply a spectrum.
7Presumably a similar statement holds for general V, possibly with some additional assumptions.
8The argument showing that ΩS is well-pointed is precisely the argument which shows that σ is a
well-defined natural transformation.
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Let L denote the localisation LΩS(SpΩC), which is a a subcategory of the category
of ind-spectra ŜpΩ(C). This category comes equipped with a localisation functor
Ω∞S∞ := (ΩS)∞ : SpΩ(C) → L. Since Ω and S commute, so do Ω̂ and Ŝ, and
hence they are mutually inverse functors on L.

Observe that there is a natural fully faithful functor ι : ŜpΩ(C)→ SpΩ̂(Ĉ) defined
as follows. If X : J → SpΩ(C) is an ind-spectrum, then (ιX)n is the ind-object

J
X−→ SpΩ(C)

(−)n−−−→ C. The connecting maps are obtained analogously.9

We refer to the composition ιΩ∞S∞ as the spectrification functor; by construc-
tion its image lies in the subcategory SpΩ̂(Ĉ). One can easily compute that if X is
a spectrum, we have (ιΩ∞S∞X)n ∼= lim−→

(
Xn → ΩXn+1 → Ω2Xn+2 → · · ·

)
, where

we take the filtered colimit in Ĉ. The structure maps are induced from those of X.

Example 8. When C has filtered colimits, the composition

lim−→ ◦ ιΩ
∞S∞ : SpΩ(C)→ SpΩ(C)

is (an enriched version of) the classical spectrification appearing in e.g. [LMSM86].

Example 9. Suppose that the endofunctor Ω was actually well-pointed, by a natural
transformation θ. This yields a functor Θ : C → SpΩ(C) defined by Θ(X)n = X,
with the structure maps σn : X → ΩX given by θ. Then the spectrification of Θ(X)
has at all levels the localisation Ω∞(X).

Example 10. Suppose that the endofunctor Ω admits a left adjoint Σ. This yields
a functor Σ∞ : C → SpΩ(C) by putting Σ∞(X)n = ΣnX. The structure map
ΣnX → ΩΣn+1X is the adjunct of the identity map on Σn+1. Note that by
composition with Ωn this yields maps ΩnΣnX → Ωn+1Σn+1X. Put

Ω∞Σ∞X := lim−→
(
X → ΩΣX → Ω2Σ2X → · · ·

)
where again we take the filtered colimit in Ĉ. This construction is topologically
known as the free infinite loop space on X. One can check that the nth level of
the spectrification of Σ∞X is precisely Ω∞Σ∞(ΣnX), which recovers the classical
topological fact that Ω∞Σ∞X is the zeroth level of the spectrification of Σ∞X.

Remark 11. For the purposes of algebraic topology, especially constructing a symmet-
ric monoidal smash product of spectra, the above approach is known to be completely
inadequate [Lew91]. One either needs to use model categories of highly structured
spectra, as in e.g. [MMSS01], or use ∞-categories from the beginning, as in [Lur17].
We note that similar constructions to that of this section in a homotopy-invariant
setting have already been given in [Hel97, §8].

5. Stabilisation, cospectra, and comparisons

Once again we work in the enriched setting. Let C be a category and Ω an
endofunctor of C. Following Heller [Hel68, §1], we define a new category SΩC, the
stabilisation of C, as follows. The objects are the pairs (c, i) with c ∈ C and i ∈ Z.
The morphisms are defined to be

SΩC((c, i), (d, j)) := lim−→
k

C(Ωk+ic,Ωk+jd)

9More abstractly, a spectrum is a certain kind of pro-object, and the natural comparison functor
indproC → proindC gives the map from ind-spectra to spectra in ind-objects.
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with composition inherited from C. For brevity we will write [−,−] for the hom-
objects in SΩC; with this notation we clearly have [(c, i), (d, j)] ≃ [(c, i+ l), (d, j+ l)]
for all l ∈ Z. The functor Ω extends to the stabilisation by putting Ω(c, i) := (Ωc, i),
and one can easily verify via the Yoneda lemma that there is a natural isomorphism
Ω(c, i) ∼= (c, i + 1). In particular, Ω is an autoequivalence of SΩC, with inverse
(c, i) 7→ (c, i− 1). There is an obvious functor C → SΩC sending c to (c, 0), which is
universal with respect to stabilising Ω [Hel68, Proposition 1.1].

Observe that there is a natural comparison map Φ : SpΩ(C)→ SΩC defined by
sending a spectrum X to the pair (X0, 0) ∼= (Xi, i).
Proposition 12. Suppose that θ : id→ Ω is a well-pointed endofunctor on a locally
finitely presentable10 category C. We denote by Ω∞ : C → C the corresponding
localisation functor, with image LΩC ↪→ C.

(1) The localisation LΩC is a coreflective subcategory of SΩC, with coreflection
given by the functor η which sends (d, i) to (Ω∞(d), 0) ∼= (Ω∞(d), n).

(2) The localisation LΩC is a coreflective subcategory of SpΩ(C), with coreflection
given by the functor ε which sends a spectrum X to the constant spectrum
on Ω∞(X0) (with structure maps as in Example 9).

(3) There is a natural comparison map Ψ : SΩC → SpΩ(C) which sends (c, i) to
the constant spectrum on Ω∞(c) .

(4) There are natural isomorphisms ΦΨ ∼= η and ΨΦ ∼= ε.
(5) The following are equivalent:

• Φ is an equivalence, with inverse Ψ.
• Both SpΩ(C) and SΩC are naturally equivalent to LΩC.

Proof. For (1), the inclusion functor is the composition LΩC ↪→ C → SΩC; this is
fully faithful since ΩkΩ∞ ∼= Ω∞ as functors on C. For the coreflection, we compute

[(Ω∞c, 0), (d, i)] ∼= lim−→
k

C(Ω∞c,Ωk+id) ∼= lim−→
k

C(Ω∞c,Ωkd) ∼= LΩC(Ω∞c,Ω∞d)

where in the last step we use the natural isomorphism Ω∞Ω∞ ∼= Ω∞. The proof
of (2) is similar; here the inclusion functor is the composition LΩC ↪→ C

Θ−→ SpΩ(C)
where Θ is the functor of Example 9. For (3), since SpΩ(C) stabilises Ω, the universal
property of the stabilisation ensures the existence of Ψ and the proof of [Hel68,
Proposition 1.1] yields the desired description. Claim (4) is a simple computation
and claim (5) follows easily. □

Remark 13. When V = Set, one can regard SΩC as the colimit of the diagram
C Ω−→ C Ω−→ C Ω−→ · · · , which one could call the category of Ω-cospectra.11,12 If J
denotes the doubly-infinite diagram · · · Ω−→ C Ω−→ C Ω−→ C Ω−→ · · · then we obtain
a natural comparison map SpΩ(C) ∼= lim←− J −→ lim−→ J ∼= SΩC which agrees with
the comparison map Φ defined above. Hence, in this setting, Φ is an equivalence
precisely when Ω has eventual image duality in the sense of [Lei24]. For more
on the duality between spectra and cospectra, see [Gra95, §4].

10One can remove this assumption by replacing C by Ĉ; for readability we refrain from doing this.
11More generally, this holds when V is a presheaf category (e.g. sSet), since colimits in V are
computed pointwise. In general, colimits in V-Cat can be computed as in [Wol74].
12To obtain the cospectra of [Lim59], one should instead take the corresponding 2-colimit. Pre-
sumably one can then adapt the arguments of the previous section to construct a cospectrification
functor which replaces a cospectrum by an Ω-cospectrum. Note that [AI22] refers to the higher-
categorical version of cospectra as telescopes.
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Remark 14. Suppose that θ : id→ Ω is a well-pointed endofunctor on C. Although
both SpΩ(C) and SΩC satisfy a universal property with respect to stabilising Ω,
neither construction need actually invert the map θ.

Remark 15. For certain left triangulated categories (C,Ω), the stabilisation SΩC can
be realised as a generalised singularity category [Bel00, Theorem 3.8], cf. [Buc21,
KV87, CW25]. Dually, for certain right triangulated categories, the costabilisation
SpΩ(C) has a similar interpretation [Bel00, Theorem 3.11], cf. [Gra95].
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